Navigating the Perfect Storm through Simulation: Interprofessional Practice, Big Data and Watson

C. Donald Combs, Ph.D.
Vice President and Dean,
School of Health Professions
Eastern Virginia Medical School (EVMS)
Visiting Professor, iLumens Simulation Department,
Paris Descartes University (PDU)

A Presentation to the 2016 Annual AEI Consortium Meeting
American College of Surgeons
Chicago, Illinois
March 7-8, 2016
Healthcare in the U.S.

- Complicated
- Expensive
- Moderately effective
- Sometimes unsafe
- Based on the wrong “average”
- Based on rapidly evolving BOK
IMPRECISION MEDICINE

For every person they do help (blue), the ten highest-grossing drugs in the United States fail to improve the conditions of between 3 and 24 people (red).

<table>
<thead>
<tr>
<th>1. Abilify (aripiprazole)</th>
<th>2. Nexium (esomeprazole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schizophrenia</td>
<td>Heartburn</td>
</tr>
<tr>
<td>3. Humira (adalimumab)</td>
<td>4. Crestor (rosuvastatin)</td>
</tr>
<tr>
<td>Arthritis</td>
<td>High cholesterol</td>
</tr>
<tr>
<td>5. Cymbalta (duloxetine)</td>
<td>6. Advair Diskus (fluticasone propionate)</td>
</tr>
<tr>
<td>Depression</td>
<td>Asthma</td>
</tr>
<tr>
<td>7. Enbrel (etanercept)</td>
<td>8. Remicade (infliximab)</td>
</tr>
<tr>
<td>Psoriasis</td>
<td>Crohn’s disease</td>
</tr>
<tr>
<td>9. Copaxone (glatiramer acetate)</td>
<td>Multiple sclerosis</td>
</tr>
<tr>
<td>10. Neulasta (pegfilgrastim)</td>
<td>Neutropenia</td>
</tr>
</tbody>
</table>

Based on published number needed to treat (NNT) figures. For a full list of references, see Supplementary Information at go.nature.com/4dr78f.
38 Competencies for Interprofessional Collaborative Practice Identified by IPEC

Four Levels of Impact (Issenberg et.al.)

• Participation Effectiveness 63%
• Change of Attitudes and Knowledge 30%
• Behavior Change 30%
• Change in Professional Practice and Benefit to Patient 4%
Vanessa Díaz-Zuccarini, one of the leading researchers in the field, defines the Digital Patient as "a technological framework that, once fully developed, will make it possible to create a computer representation of the health status of each citizen that is descriptive, interpretive, integrative and predictive."
A Sampling of Data Sources for the Digital Patient
Next generation clinical decision support

- Cognitive assistants using multimodal reasoning
 - A combination approach
 - Employ machine learning in all stages of disease detection combining with advanced shape modeling
 - Feature generation & selection for medical images also with machine learning
 - Use unsupervised patient similarity to learn from EHR data on large patient collections
 - Employ knowledge and reasoning to do inference in a top-down + bottom-up fashion
 - Emphasizes summarization as an important role for CDS
 - Anomaly-driven summaries use advanced machine learning and shape modeling
Challenges facing clinical decision support

- How to combine EHR data with clinical knowledge
 - When should the EHR data be trusted over clinical knowledge.
- Generation and labeling of large-scale data
 - Semi-automatic versus automatic ground trothing of large-scale medical image collections
- Adding pathologic and genomic data to the analysis
 - How does genomic information factor into the CDS analysis?
- Benchmarking grand challenges to compare the performance of algorithms
 - How to evaluate the accuracy of the algorithms on datasets and by clinician verification
- Adoption by clinicians.
 - What use scenarios are best to attempt?
- FDA approval status
 - Does CDS need approval as a class 2 or 3 device?
Challenges

Providing medical professionals and biomedical researchers with advanced user interfaces that make it easier to cope with large amounts of information related to different organ systems, different space/time scales and different diagnostics.
Challenges (continued)

Providing healthcare practitioners with an information and communication technology (ICT) layer capable of integrating all available health information for each patient into a coherent whole.
References

