PART VI

Skin
Carcinoma of the Skin
(Excluding Eyelid, Vulva, and Penis)

INTRODUCTION

This chapter applies to non-melanomatous cancers of the skin, which are predominantly basal cell carcinomas and squamous cell carcinomas. Skin cancers are largely related to solar exposure and are relatively common, although their frequency varies with geographic latitude and population at risk. For example, they occur in 729 individuals per 100,000 population in Hawaii but in only 195 per 100,000 in the northern United States. Higher rates are found in Australia and New Zealand, and the incidence generally is rising rapidly. Basal cell carcinomas are the most common cancer in humans, and are four to five times more common than squamous cell carcinomas of the skin. For the most part, non-melanomatous skin cancers have a good prognosis and nearly always can be treated with curative intent. Refer to Chapter 40 for staging of carcinoma of the eyelid and to Chapter 24 for malignant melanoma of the skin.

ANATOMY

Primary Site. The skin is made up of three layers: an outermost epidermis, a middle dermis, and an inner subcutis. The epidermis consists predominantly of stratified squamous epithelium, the outermost layer of which is keratinized. The innermost layer consists primarily of germinative cells and melanocytes. The dermis is made up of connective tissue and elastic fibers immersed in an amorphous matrix of mucopolysaccharides. The subcutis is predominantly adipose tissue. The sebaceous and other glands of the skin, as well as hair follicles—collectively called adnexal structures—are found in the dermis and subjacent subcutis. All of the components of the skin (epidermis, dermis, and adnexal structures within the subcutis) can give rise to malignant neoplasms.

Cancers of the skin most commonly arise on those surfaces exposed to sunlight (including the face, ears, hands, and scalp, especially in balding men), and the role of sunlight in the induction of cutaneous cancer has been well described. Approximately four-fifths of all cutaneous squamous cell cancers and approximately two-thirds of all basal cell cancers occur in unprotected sun-exposed skin of lightly pigmented persons. Squamous cell carcinoma can also arise in skin that was previously scarred or ulcerated—that is, at sites of burns and chronic ulcers. Radiation in other than ultraviolet forms, chemicals, and genetic syndromes are also proven causes of cutaneous carcinomas.

Skin cancers rarely cause symptoms. Signs vary depending on the local site of origin and whether the precursor lesion is an actinic keratoses or a cutaneous ulcer. Squamous cell tumors developing at the site of actinic keratoses usually begin as hyperkeratotic papules or plaques or as ulcers. Induration, which is usually absent in actinic keratoses, may develop early in squamous cell cancer. Further progression is associated with thickening of the plaque, ulceration, and bleeding. Tumors that arise in cutaneous ulcers or burn scars present as an expanding mass at the site. High-risk tumors (higher local recurrence rate or high risk for metastasis) are found on the lip, scalp, ears, eyelids, and nose.

Basal cell carcinomas initially appear clinically as firm, translucent papules covered by telangiectatic blood vessels. Central areas of crusting and depression, associated with ulceration, usually occur late. Bleeding, however, may be described in early as well as late lesions. Pigmentation occurs uncommonly and may lead clinically to confusion with cutaneous melanoma. Morphoeiform basal cell carcinoma (basal cell carcinoma with a fibrotic component) may look
and feel like localized patches of scleroderma, or a scar, and is generally without telangiectasia or measurable elevation.

Primary Growth. Local extension is the predominant mode of growth of non-melanomatous skin cancers. Basal cell carcinomas that remain untreated for long periods will eventually erode adjacent structures, such as bone, and into local vasculature. Perineural invasion in morphoeform basal cell cancers is often observed, and it is associated with a high rate of incomplete excision and recurrence. Squamous cell carcinoma may also invade the perineural space, and this feature is associated with increased local recurrence. Squamous cell carcinoma may also penetrate into other local structures, including muscle, bone, and vasculature.

Regional Lymph Nodes. Skin cancers characteristically spread by local extension. Involvement of regional lymph nodes infrequently occurs and is usually associated with large size and invasiveness into the dermis and subcutaneous fat. Which specific lymph node chains are involved depends on the location of the primary lesion, because tumor cells are passively borne along with the “draining” lymphatic fluid, usually to the geographically closest node(s). In this context, for tumors of the lower torso or lower extremities, the inguinal nodes are considered the regional basin and should be designated N1. For pN (pathologic staging), histologic examination of a regional lymphadenectomy specimen should include careful examination of all resected nodes.

Hematogenously Borne Metastases. Basal cell and squamous cell cancers that arise in actinically damaged skin are relatively slow growing and rarely metastasize. Metastases are more likely to arise from squamous cell tumors that originate in scars or ulcers. Tumors that metastasize have often been present for a long time before metastases are observed. The most common visceral metastatic site is the lung, especially for squamous cell carcinomas. Other sites of distant spread are unusual. Non-melanoma skin cancers arising in transplant patients may be more aggressive and may metastasize more readily and more widely.

RULES FOR CLASSIFICATION

The clinical and pathologic classifications are identical. However, pathologic staging uses the symbol p as a prefix.

Clinical Staging. The assessment of skin cancer is based on inspection and palpation of the involved area and the regional lymph nodes. Imaging studies of the underlying bony structures are important for any lesion that appears fixed to underlying fascia, muscle, or bone.

Pathologic Staging. Complete resection of the entire site is required. Confirmation of lymph node involvement is also necessary when involvement is suspected. The degree of malignancy of squamous cell cancer of the skin generally is related to the degree of anaplasia within the tumor. Low-grade tumors show considerable cell differentiation, uniform cell size, infrequent cellular mitoses and nuclear irregularity, and intact intercellular bridges. High-grade tumors show little differentiation, are often of spindle cell in character, show necrosis, exhibit high mitotic activity, and are often deeply invasive. Depth of invasion can often be correlated with degree of tumor aggressiveness.

DEFINITION OF TNM

Definitions for clinical (cTNM) and pathologic (pTNM) classifications are the same.

Primary Tumor (T)
- TX Primary tumor cannot be assessed
- T0 No evidence of primary tumor
- Tis Carcinoma in situ
- T1 Tumor 2 cm or less in greatest dimension
- T2 Tumor more than 2 cm, but not more than 5 cm, in greatest dimension
- T3 Tumor more than 5 cm in greatest dimension
- T4 Tumor invades deep extradermal structures (i.e., cartilage, skeletal muscle, or bone)

Note: In case of multiple simultaneous tumors, the tumor with the highest T category will be classified and the number of separate tumors will be indicated in parentheses, e.g., T2 (5).

Regional Lymph Nodes (N)
- NX Regional lymph nodes cannot be assessed
- N0 No regional lymph node metastasis
- N1 Regional lymph node metastasis

Distant Metastasis (M)
- MX Distant metastasis cannot be assessed
- M0 No distant metastasis
- M1 Distant metastasis

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

The classification applies only to carcinomas of the skin, primarily squamous cell and basal cell varieties. It also applies
to the adenocarcinomas that develop from sweat or sebaceous glands and to a spindle cell variant of squamous cell carcinoma. There should be microscopic verification of the disease to permit grouping of cases by histologic type. A form of in situ squamous cell carcinoma or intraepidermal squamous cell carcinoma is often referred to as Bowen disease. This lesion should be coded as Tis. Squamous cell tumors may also be described as verrucous.

HISTOLOGIC GRADE (G)

- **GX** Grade cannot be assessed
- **G1** Well differentiated
- **G2** Moderately differentiated
- **G3** Poorly differentiated
- **G4** Undifferentiated

PROGNOSTIC FACTORS

In squamous cell carcinoma, tumor aggressiveness correlates well with tumor size, duration, location, origin, and degree of anaplasia. Large tumors are usually present for longer periods or are rapidly growing. Long-standing tumors tend to grow extensively and to invade other structures, such as local vasculature, nervous tissue, or soft tissue. Tumors of the scalp, ears, lips, nose, eyelids, or soft tissues readily invade subcutaneous tissue and have a greater risk of subclinical tumor extension.

Anaplastic squamous cell carcinomas readily tend to invade locally and to metastasize earlier than well-differentiated tumors, regardless of location.

Although they have been noted in cases of large ulcerated and recurrent lesions, metastases from basal cell carcinomas are rare. However, basal cell cancers are often locally destructive.

BIBLIOGRAPHY

HISTOLOGIES—CARCINOMA OF THE SKIN

- 8010/2 Carcinoma in situ, NOS
- 8010/3 Carcinoma, NOS
- 8011/3 Epithelioma, malignant
- 8012/3 Large cell carcinoma, NOS
- 8013/3 Large cell neuroendocrine carcinoma
- 8014/3 Large cell carcinoma with rhabdoid phenotype
- 8015/3 Glasye cell carcinoma
- 8020/3 Carcinoma, undifferentiated, NOS
- 8021/3 Carcinoma, anaplastic, NOS
- 8022/3 Pleomorphic carcinoma
- 8030/3 Giant cell and spindle cell carcinoma
- 8031/3 Giant cell carcinoma
- 8032/3 Spindle cell carcinoma, NOS
- 8033/3 Pseudosarcomatous carcinoma
- 8034/3 Polygonal cell carcinoma
- 8035/3 Carcinoma with osteoclast-like giant cells
- 8041/3 Small cell carcinoma, NOS
- 8042/3 Oat cell carcinoma
- 8043/3 Small cell carcinoma, fusiform cell
- 8044/3 Small cell carcinoma, intermediate cell
- 8045/3 Combined small cell carcinoma
- 8046/3 Non-small cell carcinoma
- 8050/2 Papillary carcinoma in situ
- 8050/3 Papillary carcinoma, NOS
- 8051/3 Verrucous carcinoma, NOS
- 8052/3 Papillary squamous cell carcinoma non-invasive
- 8053/2 Papillary squamous cell carcinoma
- 8070/2 Squamous cell carcinoma in situ, NOS
- 8070/3 Squamous cell carcinoma, NOS
- 8071/3 Squamous cell carcinoma, keratinizing, NOS
- 8072/3 Squamous cell carcinoma, large cell
- 8073/3 Squamous cell carcinoma, small cell, non-keratinizing
- 8074/3 Squamous cell carcinoma, spindle cell
- 8075/3 Squamous cell carcinoma, adenoid
- 8076/2 Squamous cell carcinoma in situ with questionable stromal invasion
- 8076/3 Squamous cell carcinoma, microinvasive
HISTOLOGIES—CARCINOMA OF THE SKIN (CONT.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8077/2</td>
<td>Squamous intraepithelial neoplasia, grade III</td>
</tr>
<tr>
<td>8078/3</td>
<td>Squamous cell carcinoma with horn formulation</td>
</tr>
<tr>
<td>8080/2</td>
<td>Queyrat erythroplasia</td>
</tr>
<tr>
<td>8081/2</td>
<td>Bowen disease</td>
</tr>
<tr>
<td>8082/3</td>
<td>Lymphoepithelial carcinoma</td>
</tr>
<tr>
<td>8083/3</td>
<td>Basaloid squamous cell carcinoma</td>
</tr>
<tr>
<td>8084/3</td>
<td>Squamous cell carcinoma, clear cell type</td>
</tr>
<tr>
<td>8090/3</td>
<td>Basal cell carcinoma</td>
</tr>
<tr>
<td>8091/3</td>
<td>Multifocal superficial basal cell carcinoma</td>
</tr>
<tr>
<td>8092/3</td>
<td>Infiltrating basal cell carcinoma, NOS</td>
</tr>
<tr>
<td>8093/3</td>
<td>Basal cell carcinoma, fibroepithelial</td>
</tr>
<tr>
<td>8094/3</td>
<td>Basosquamous carcinoma</td>
</tr>
<tr>
<td>8095/3</td>
<td>Metatypical carcinoma</td>
</tr>
<tr>
<td>8097/3</td>
<td>Basal cell carcinoma, nodular</td>
</tr>
<tr>
<td>8098/3</td>
<td>Adenoid basal carcinoma</td>
</tr>
<tr>
<td>8102/3</td>
<td>Trichilemmocarcinoma</td>
</tr>
<tr>
<td>8110/3</td>
<td>Pilomatrix carcinoma</td>
</tr>
<tr>
<td>8140/2</td>
<td>Adenocarcinoma in situ, NOS</td>
</tr>
<tr>
<td>8140/3</td>
<td>Adenocarcinoma, NOS</td>
</tr>
<tr>
<td>8141/3</td>
<td>Scirrhous adenocarcinoma</td>
</tr>
<tr>
<td>8190/3</td>
<td>Trabecular adenocarcinoma</td>
</tr>
<tr>
<td>8200/3</td>
<td>Adenoid cystic carcinoma</td>
</tr>
<tr>
<td>8201/3</td>
<td>Cribriform carcinoma, NOS</td>
</tr>
<tr>
<td>8247/3</td>
<td>Merkel cell carcinoma</td>
</tr>
<tr>
<td>8390/3</td>
<td>Skin appendage carcinoma</td>
</tr>
<tr>
<td>8400/3</td>
<td>Sweat gland adenocarcinoma</td>
</tr>
<tr>
<td>8401/3</td>
<td>Apocrine adenocarcinoma</td>
</tr>
<tr>
<td>8402/3</td>
<td>Nodular hidradenoma, malignant</td>
</tr>
<tr>
<td>8403/3</td>
<td>Malignant eccrine spiradenoma</td>
</tr>
<tr>
<td>8407/3</td>
<td>Sclerosing sweat duct carcinoma</td>
</tr>
<tr>
<td>8408/3</td>
<td>Eccrine papillary adenocarcinoma</td>
</tr>
<tr>
<td>8409/3</td>
<td>Eccrine poroma, malignant</td>
</tr>
<tr>
<td>8410/3</td>
<td>Sebaceous adenocarcinoma</td>
</tr>
<tr>
<td>8413/3</td>
<td>Eccrine adenocarcinoma</td>
</tr>
<tr>
<td>8420/3</td>
<td>Cereuminous adenocarcinoma</td>
</tr>
<tr>
<td>8430/3</td>
<td>Mucoepidermoid carcinoma</td>
</tr>
<tr>
<td>8440/3</td>
<td>Cystadenocarcinoma, NOS</td>
</tr>
<tr>
<td>8490/3</td>
<td>Signet ring cell carcinoma</td>
</tr>
<tr>
<td>8560/3</td>
<td>Adenosquamous carcinoma</td>
</tr>
<tr>
<td>8562/3</td>
<td>Epithelial-myoepithelial carcinoma</td>
</tr>
<tr>
<td>8570/3</td>
<td>Adenocarcinoma with squamous metaplasia</td>
</tr>
<tr>
<td>8571/3</td>
<td>Adenocarcinoma with cartilaginous and osseous metaplasia</td>
</tr>
<tr>
<td>8572/3</td>
<td>Adenocarcinoma with spindle cell metaplasia</td>
</tr>
<tr>
<td>8573/3</td>
<td>Adenocarcinoma with apocrine metaplasia</td>
</tr>
<tr>
<td>8940/3</td>
<td>Mixed tumor, malignant, NOS</td>
</tr>
<tr>
<td>8941/3</td>
<td>Carcinoma in pleomorphic adenoma</td>
</tr>
</tbody>
</table>
CARCINOMA OF THE SKIN (EXCLUDING EYELID, VULVA, AND PENIS)

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen

Tumor Size

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TX Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0 No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tis Carcinoma in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 Tumor 2 cm or less in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2 Tumor more than 2 cm, but not more than 5 cm, in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3 Tumor more than 5 cm in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4 Tumor invades deep extradermal structures (i.e., cartilage, skeletal muscle, or bone)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0 No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1 Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0 No distant metastasis</td>
</tr>
<tr>
<td>M1 Distant metastasis</td>
</tr>
<tr>
<td>Biopsy of metastatic site performed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Tis N0 M0</td>
</tr>
<tr>
<td>I T1 N0 M0</td>
</tr>
<tr>
<td>II T2 N0 M0</td>
</tr>
<tr>
<td>T3 N0 M0</td>
</tr>
<tr>
<td>III T4 N0 M0</td>
</tr>
<tr>
<td>Any T N1 M0</td>
</tr>
<tr>
<td>IV Any T Any N M1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histologic Grade (G)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX Grade cannot be assessed</td>
</tr>
<tr>
<td>G1 Well differentiated</td>
</tr>
<tr>
<td>G2 Moderately differentiated</td>
</tr>
<tr>
<td>G3 Poorly differentiated</td>
</tr>
<tr>
<td>G4 Undifferentiated</td>
</tr>
</tbody>
</table>

Notes:

1. In case of multiple simultaneous tumors, the tumor with the highest T category will be classified and the number of separate primaries will be indicated in parentheses, e.g., T2 (5).

(continued on reverse side)
CARCINOMA OF THE SKIN (EXCLUDING EYELID, VULVA, AND PENIS) (continued)

Residual Tumor (R)
- RX: Presence of residual tumor cannot be assessed
- R0: No residual tumor
- R1: Microscopic residual tumor
- R2: Macroscopic residual tumor

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix** indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- **a prefix** designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.

Physician’s Signature ___________________________ Date ___________________________
Melanoma of the Skin

C44.0 Skin of lip, NOS
C44.1 Eyelid
C44.2 External ear
C44.3 Skin of other and unspecified parts of face
C44.4 Skin of scalp and neck
C44.5 Skin of trunk
C44.6 Skin of upper limb and shoulder
C44.7 Skin of lower limb and hip
C44.8 Overlapping lesion of skin
C44.9 Skin, NOS
C51.0 Labium majus
C51.1 Labium minus
C51.2 Clitoris
C51.8 Overlapping lesion of vulva
C51.9 Vulva, NOS
C60.0 Penis
C60.1 Glans penis
C60.2 Body of penis
C60.8 Overlapping lesion of penis
C60.9 Penis, NOS
C63.2 Scrotum, NOS

SUMMARY OF CHANGES

- Melanoma thickness and ulceration, but not level of invasion, are used in the T category (except for T1 melanomas).
- The number of metastatic lymph nodes, rather than their gross dimensions and the delineation of clinical occult (i.e., “microscopic”) vs. clinically apparent (i.e., “macroscopic”) nodal metastases, are used in the N category.
- The site of distant metastases and the presence of elevated serum lactic dehydrogenase (LDH) are used in the M category.
- All patients with Stage I, II, or III disease are upstaged when a primary melanoma is ulcerated.
- Satellite metastases around a primary melanoma and in-transit metastases have been merged into a single staging entity that is grouped into Stage IIIc disease.
- A new convention for defining clinical and pathologic staging has been developed that takes into account the new staging information gained from intraoperative lymphatic mapping and sentinel node excision.

INTRODUCTION

Melanoma of the skin continues to increase in frequency, with 47,700 new cases and 9,200 deaths in the year 2000. Melanoma can arise from skin anywhere on the body. It occurs most commonly in fair-skinned persons, especially those with a history of significant sun exposure.

A completely revised melanoma staging system is described herein, along with operational definitions. In addition, a major database analysis of prognostic factors involving 17,600 patients from 13 cancer centers and organizations was performed to validate the staging categories and groupings. Within each stage grouping and its subgroups, there is a uniform risk for distant metastases and a uniform survival probability. This revised version of melanoma staging more accurately reflects the prognosis and natural history of melanoma and will therefore be more applicable to treatment planning and clinical trials involving melanoma. The major differences between the new version of the melanoma staging system and the version that appeared in the Fifth Edition are summarized in Table 24.1. The chapter summary above outlines the major revisions, while more details about the staging rationale and interpretation have been published elsewhere.

ANATOMY

Primary Sites. Cutaneous melanoma can occur anywhere on the skin. It occurs most commonly on the extremities in
TABLE 24.1. Differences between the previous (1997) version and the present (2002) version of the melanoma staging system (adapted from Balch et al.)

<table>
<thead>
<tr>
<th>Factor</th>
<th>Old System</th>
<th>New System</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>Secondary prognostic factor; thresholds of 0.75, 1.50, 4.0 mm</td>
<td>Primary determinant of T staging; thresholds of 1.0, 2.0, 4.0 mm</td>
<td>Correlation of metastatic risk is a continuous variable</td>
</tr>
<tr>
<td>Level of invasion</td>
<td>Primary determinant of T staging</td>
<td>Used only for defining T1 melanomas</td>
<td>Correlation only significant for thin lesions; variability in interpretation</td>
</tr>
<tr>
<td>Ulceration</td>
<td>Not included</td>
<td>Included as a second determinant of T and N staging</td>
<td>Signifies a locally advanced lesion; dominant prognostic factor for grouping stages I, II, and III</td>
</tr>
<tr>
<td>Satellite metastases</td>
<td>In T category</td>
<td>In N category</td>
<td>Merged with in-transit lesions</td>
</tr>
<tr>
<td>Thick melanomas (> 4.0 mm)</td>
<td>Stage III</td>
<td>Stage IIC</td>
<td>Stage III defined as regional metastases</td>
</tr>
<tr>
<td>Dimensions of nodal metastases</td>
<td>Dominant determinant of N staging</td>
<td>Not used</td>
<td>No evidence of significant prognostic correlation</td>
</tr>
<tr>
<td>Number of nodal metastases</td>
<td>Not included</td>
<td>Primary determinant of N staging</td>
<td>Thresholds of 1 vs. 2–3 vs. ≥ 4 nodes</td>
</tr>
<tr>
<td>Metastatic tumor burden</td>
<td>Not included</td>
<td>Included as a second determinant of N staging</td>
<td>Clinically occult ("microscopic") vs. clinically apparent ("macroscopic") nodal volume</td>
</tr>
<tr>
<td>Lung metastases</td>
<td>Merged with all other visceral metastases</td>
<td>Separate category as M1b</td>
<td>Has a somewhat better prognosis than other visceral metastases</td>
</tr>
<tr>
<td>Elevated serum LDH</td>
<td>Not included</td>
<td>Included as a second determinant of M staging</td>
<td></td>
</tr>
<tr>
<td>Clinical vs. pathologic staging</td>
<td>Did not account for sentinel node technology</td>
<td>Sentinel node results incorporated into definition of pathologic staging</td>
<td>Large variability in outcome between clinical and pathologic staging; pathologic staging encouraged prior to entry into clinical trials</td>
</tr>
</tbody>
</table>

females and on the trunk in males. Melanomas located on the palms, soles, and nailbeds (acral lentigious melanoma), although they occur infrequently, are distinctive because they can occur in individuals of any ethnic origin and in persons with no history of significant sun exposure.

Regional Lymph Nodes. The regional lymph nodes are the most common site of metastases. The widespread use of cutaneous lymphoscintigraphy, lymphatic mapping, and sentinel lymph node biopsies has greatly enhanced the ability to identify the presence or absence of, and to stage, nodal metastases. Intralymphatic regional metastases may also become clinically manifest either as satellite metastases (defined arbitrarily as intralymphatic metastases occurring within 2 cm of the primary melanoma) or as in-transit metastases (defined arbitrarily as intralymphatic metastases occurring more than 2 cm from the primary melanoma but before the first echelon of regional lymph nodes). By convention, the term regional nodal metastases refers to disease confined to one nodal basin or two contiguous nodal basins, as in patients with nodal disease in combinations of femoral/iliac, axillary supraclavicular, cervical supraclavicular, axillary/femoral, or bilateral axillary or femoral metastases.

Metastatic Sites. Melanoma can metastasize to virtually any organ site. Metastases most commonly occur in the skin or soft tissues, the lung, and the liver.

RULES FOR CLASSIFICATION

The primary difference between the definitions of clinical and pathologic stage grouping is whether the regional lymph nodes are staged by clinical/radiologic exam or by pathologic exam (after partial or complete lymphadenectomy).

Clinical Staging. By convention, clinical staging should be performed after complete excision of the primary melanoma (including microstaging) and after information about metastases to either regional or distant anatomic sites has been obtained after clinical, radiologic, and laboratory assessment. The microstaging of a primary melanoma is performed after an excisional biopsy of a primary melanoma, with pathologic assessment of tumor thickness (Breslow method), level of invasion (Clark method), and any ulceration of the overlying epidermis. All of these parameters are used in melanoma staging.

Clinical Stages I and II are confined to those patients who have no evidence of metastases, at either regional or distant sites, based on clinical, radiologic, and/or laboratory evaluation. Stage III melanoma patients are those with clinical or radiologic evidence of regional metastases, either metastases in the regional lymph nodes or intralymphatic metastases manifesting as either satellite or in-transit metastases. Clinical Stage III groupings rely on clinical and/or radiologic assessment of the regional lymph nodes, which is inherently difficult, especially with respect to assessing both the presence
and the number of metastatic nodes. Therefore, no subgroup definitions of clinically staged patients with nodal or intra-lymphatic regional metastases have been made. They are all categorized as clinical Stage III disease. Clinical Stage IV melanoma patients have metastases at any distant site and are not substaged further.

Pathologic Staging. Pathologic staging uses all of the same staging information described above under Clinical Staging plus information gained from pathologic evaluation of the regional lymph nodes after partial (i.e., sentinel) or complete lymphadenectomy (i.e., after elective or therapeutic lymph node dissection), along with pathologic confirmation of metastases identified by clinical or radiologic examinations.

Pathologic Stage I melanoma and Stage II melanoma comprise those patients who have no evidence of regional or distant metastases, based on absence of nodal metastases after careful pathologic examination of the regional lymph nodes, and absence of distant metastases, based on routine clinical and radiologic examination. Pathologic Stage III melanoma patients have pathologic evidence of regional metastases, either in the regional lymph nodes or the intralymphatic sites. The quantitative classification for pathologic nodal status requires that pathologists perform a careful examination of the surgically resected nodal basin and report on the actual number of lymph nodes examined and the number of nodal metastases identified. Pathologic Stage IV melanoma patients have histologic documentation of metastases at one or more distant sites.

With the widespread use of sentinel node lymphadenectomy, it is clear that there is considerable stage migration of patients who have previously been staged as "node negative" but who in fact had undetected nodal metastases. These previously understaged Stage III patients have revealed an extraordinary heterogeneity of metastatic risk for Stage III melanoma. Thus the survival rates among various subgroups of pathologic Stage III patients vary widely, ranging from 9% to 63% 10-year survival.²

DEFINITION OF TNM

Patients with melanoma in situ are categorized as Tis. Those patients with melanoma presentations that are indeterminate or cannot be microstaged should be categorized as T0. The T category of melanoma is classified primarily by measuring the thickness of the melanoma as defined by Dr. Alexander Breslow.⁶⁻⁷ The T category thresholds of melanoma thickness are defined in whole integers (i.e., at 1.0, 2.0, and 4.0 mm). Melanoma ulceration is the absence of an intact epidermis overlying the primary melanoma, assessed by histopathologic examination.⁶⁻⁷ The level of invasion, as defined by Dr. Wallace Clark,¹⁰ is used to define subcategories of T1 melanomas but not for thicker melanomas (i.e., T2, T3, or T4).

Regional metastases most commonly present in the regional lymph nodes. The actual number of nodal metastases identified by the pathologist must be reported for staging purposes. A second staging definition is related to tumor burden: microscopic vs. macroscopic. Thus those patients without clinical or radiologic evidence of lymph node metastases, but who have pathologically documented nodal metastases, are defined by convention as exhibiting "microscopic" or "clinically occult" nodal metastases. In contrast, melanoma patients with both clinical evidence of nodal metastases and pathologic examination documenting the number of nodal metastases (after therapeutic lymphadenectomy) are defined by convention as having "macroscopic" or "clinically apparent" nodal metastases. Regional metastases also include intralymphatic metastases, defined as the presence of clinical or microscopic satellites around a primary melanoma, and/or in-transit metastases between the primary melanoma and the regional lymph nodes.

Distant metastases are staged primarily by the organ or site(s) in which they are located. A second factor in staging is the presence or absence of an elevated serum LDH. An elevated serum LDH should be used only when there are two or more determinations obtained more than 24 hours apart, because an elevated serum LDH on a single determination can be falsely positive as a result of hemolysis or other factors unrelated to melanoma metastases.

Primary Tumor (T)

TX	Primary tumor cannot be assessed (e.g., shave biopsy or regressed melanoma)
T0	No evidence of primary tumor
Tis	Melanoma in situ
T1	Melanoma ≤ 1.0 mm in thickness with or without ulceration
T1a	Melanoma ≤ 1.0 mm in thickness and level II or III, no ulceration
T1b	Melanoma ≤ 1.0 mm in thickness and level IV or V or with ulceration
T2	Melanoma 1.01–2.0 mm in thickness with or without ulceration
T2a	Melanoma 1.01–2.0 mm in thickness, no ulceration
T2b	Melanoma 1.01–2.0 mm in thickness, with ulceration
T3	Melanoma 2.01–4.0 mm in thickness with or without ulceration
T3a	Melanoma 2.01–4.0 mm in thickness, no ulceration
T3b	Melanoma 2.01–4.0 mm in thickness, with ulceration
T4	Melanoma greater than 4.0 mm in thickness with or without ulceration
T4a	Melanoma > 4.0 mm in thickness, no ulceration
T4b	Melanoma > 4.0 mm in thickness, with ulceration

Regional Lymph Nodes (N)

NX	Regional lymph nodes cannot be assessed
N0	No regional lymph node metastasis
N1	Metastasis in one lymph node
N1a Clinically occult (microscopic) metastasis
N1b Clinically apparent (macroscopic) metastasis
N2 Metastasis in two to three regional nodes or intrathyphagic regional metastasis without nodal metastases
N2a Clinically occult (microscopic) metastasis
N2b Clinically apparent (macroscopic) metastasis
N2c Satellite or in-transit metastasis without nodal metastasis
N3 Metastasis in four or more regional nodes, or matted metastatic nodes, or in-transit metastasis or satellite(s) with metastasis in regional node(s)

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis
M1a Metastasis to skin, subcutaneous tissues or distant lymph nodes
M1b Metastasis to lung
M1c Metastasis to all other visceral sites or distant metastasis at any site associated with an elevated serum lactic dehydrogenase (LDH)

CLINICAL STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>1B</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II A</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III C</td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Note: Clinical staging includes microstaging of the primary melanoma and clinical/radiological evaluation for metastases. By convention, it should be used after complete excision of the primary melanoma with clinical assessment for regional and distant metastases.

STAGE GROUPING

Patients with primary melanomas with no evidence of regional or distant metastases (either clinically or pathologically) are divided into two stages: Stage I for early-stage patients with "low risk" for metastases and melanoma-specific mortality and Stage II for those with "intermediate risk" for metastases and melanoma-specific mortality. There are no substages for clinical Stage III melanoma, because criteria for subgrouping can be inaccurate. Pathologic Stage III patients with regional metastases make up a very heterogeneous group that has been divided into three subgroups according to prognostic risk. Stage IIIA patients have up to three microscopic nodal metastases arising from a non-ulcerating primary melanoma and have an "intermediate risk" for distant metastases and melanoma-specific survival. Stage IIIB patients have up to three macroscopic nodal metastases arising from a non-ulcerating melanoma, or have up to three microscopic nodal metastases arising from an ulcerating melanoma, or have intrathyphagic metastases without nodal metastases. They constitute a "high-risk" group prognostically. The remaining patients are Stage IIC and are at "very high risk" for distant metastases and melanoma-specific mortality. The presence of melanoma ulceration "upstages" the prognosis of Stage I, II, and III patients compared to patients with melanomas of equivalent thickness without ulceration or those with nodal metastases arising from a non-ulcerating melanoma. There are no subgroups of Stage IV melanoma.

PATHOLOGIC STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>1B</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II A</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III C</td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T1–4a</td>
<td>N1a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1–4a</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>T1–4b</td>
<td>N1a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1–4b</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1–4a</td>
<td>N1b</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1–4a</td>
<td>N2b</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1–4a/b</td>
<td>N2c</td>
<td>M0</td>
</tr>
<tr>
<td>IIIIC</td>
<td>T1–4b</td>
<td>N1b</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1–4b</td>
<td>N2b</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Note: Pathologic staging includes microstaging of the primary melanoma and pathologic information about the regional lymph nodes after partial or complete lymphadenectomy. Pathologic Stage 0 or Stage IA patients are the exception; they do not require pathologic evaluation of their lymph nodes.
HISTOPATHOLOGIC TYPE

Melanoma in situ
Malignant melanoma, NOS
Superficial spreading melanoma
Nodular melanoma
Lentigo maligna melanoma
Acral lentiginous melanoma,
Desmoplastic melanoma,
Epithelioid cell melanoma
Spindle cell melanoma
Balloon cell melanoma
Blue nevus, malignant
Malignant melanoma in giant pigmented nevus

The following histologies are no longer appropriate for or relevant to the staging of melanoma:

Malignant melanoma, regressing
Meningeal melanomatosis
Amelanotic melanoma
Malignant melanoma in junctional nevus
Precancerous melanosis
Mucosal lentiginous melanoma
Mixed epithelioid and spindle cell melanoma
Spindle cell melanoma, type A
Spindle cell melanoma, type B
Lentigo maligna

PROGNOSTIC FACTORS AND SURVIVAL RESULTS

A summary of survival rates and the demographics of the melanoma patient database used to validate the staging criteria have been published.\(^\text{2,3}\) Fifteen-year survival rates for patients with Stages I to IV melanoma are shown in Fig. 24.1.

The AJCC Melanoma Database, which consists of prospectively accumulated melanoma outcome data merged into a single database for the purpose of validating the proposed revisions to the melanoma staging system,\(^\text{2}\) includes 17,600 patients with complete clinical and pathologic information for analyzing all of the factors required for the proposed TNM classification and stage grouping.

Ten-year survival rates for each of the T categories are shown in Fig. 24.2. Survival rates for patients with an ulcerated melanoma are proportionately lower than those for patients with a non-ulcerated melanoma of equivalent T category but are remarkably similar to those for patients with a non-ulcerated melanoma of the next highest T category (Fig. 24.2 and Table 24.2). The level of invasion does not reflect prognosis as accurately as tumor thickness, for reasons that have been discussed in previous publications.\(^\text{4,5,8,12-15}\) Nevertheless, level of invasion did provide additional prognostic discrimination in the specific subgroup of thin (i.e., T1) melanomas.\(^\text{2}\)

In a multivariate analysis of 13,581 patients with localized melanoma (either clinically or pathologically), the two most significant independent characteristics of the primary melanoma were tumor thickness and ulceration (Table 24.3). Indeed, no other feature of the melanoma or of the patient with localized melanoma had the predictive capability of these two factors. Other statistically significant prognostic factors were patient age, site of the primary melanoma, level of invasion, and gender (Table 24.3).

Complete clinical and histopathologic data were available for 1151 patients with lymph node metastases. A Cox multivariate analysis demonstrated that three factors were most significant (with \(p < 0.0001\)): (1) the number of metastatic nodes, (2) the tumor burden at the time of staging (i.e., microscopic vs. macroscopic), and (3) the presence or absence of ulceration of the primary melanoma (Table 24.4). There was a significantly lower survival (calculated from the time the primary melanoma was diagnosed) for those patients who presented with macroscopic (i.e., palpable) nodal metastases (pN1b, N2b) than for those with microscopic (i.e., non-palpable) nodal metastases, (pN1a, N2a), even after accounting for lead-time bias (\(p < 0.0001\)). (Fig. 24.3, Table 24.5). Diminishing 5-year survival with increasing tumor burden based on increasing number of metastatic nodes present was observed for all subgroups (\(p < 0.0001\)) (Table 24.5).

Ulceration of a primary melanoma was the only primary-tumor feature that still predicted an adverse outcome in Stage III disease (Table 24.5, Fig. 24.3). When all three of the most
TABLE 24.4. Cox regression analysis for 1,151 Stage III (nodal metastases) patients (adapted from Balch et al.)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Chi-Square Value (Wald)</th>
<th>P-Value</th>
<th>Risk Ratio</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of metastatic nodes</td>
<td>57.616 < 0.00001</td>
<td>1.257</td>
<td>1.185-1.334</td>
<td></td>
</tr>
<tr>
<td>Tumor burden</td>
<td>40.301 < 0.00001</td>
<td>1.792</td>
<td>1.497-2.146</td>
<td></td>
</tr>
<tr>
<td>Ulceration</td>
<td>25.282 < 0.00001</td>
<td>1.582</td>
<td>1.315-1.906</td>
<td></td>
</tr>
<tr>
<td>Site</td>
<td>17.843 0.0001</td>
<td>1.461</td>
<td>1.225-1.746</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>13.369 0.0003</td>
<td>1.118</td>
<td>1.053-1.187</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>1.964 0.1611</td>
<td>1.091</td>
<td>0.966-1.233</td>
<td></td>
</tr>
<tr>
<td>Level</td>
<td>0.219 0.6396</td>
<td>1.033</td>
<td>0.901-1.196</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>0.006 0.9407</td>
<td>1.007</td>
<td>0.836-1.213</td>
<td></td>
</tr>
</tbody>
</table>

important prognostic factors were taken into account, 5-year survival rates were remarkably heterogeneous ranging from 69% in Stage IIIA patients who had three or fewer microscopic nodal metastases arising from a non-ulcerating primary to 13% for Stage IIC patients who had four or more metastatic nodal metastases arising from an ulcerated primary melanoma (Table 24.5).

Intralymphatic metastases portend a very poor prognosis. The available data show no substantial difference in survival outcome for these two anatomically defined entities (satellite metastases and in-transit metastases). Therefore, they are both assigned to a separate N2c classification in the absence of synchronous nodal metastases, because both have a prognosis equivalent to that of multiple nodal metastases. Furthermore, the available data demonstrate that patients with a combination of satellites/in-transit metastases and nodal metastases have a worse outcome than patients who experience either event alone, so these patients are assigned to the N3 classification regardless of the number of synchronous metastatic nodes.

The prognostic influence of different distant metastatic sites was analyzed in 1,158 Stage IV patients, using various combinations of sites of metastases. The most significant differences in 1-year survival rates were noted when lung metastases were compared to all other visceral sites and non-visceral sites (i.e., skin, subcutaneous, distant lymph nodes) (Fig. 24.4). Although it is uncommon in staging classifications to include serum factors prognostically, serum LDH was among the most predictive factors of poor outcome in all published studies where it was analyzed in a multivariate analysis, even after accounting for site and number of metastases.

Significant differences were identified when survival rates for melanoma patients who were clinically staged were compared to those whose nodal disease was staged pathologically. These survival differences between clinically and pathologically staged patients were statistically significant among all T subtypes except T4b (Table 24.6). These results highlight the compelling prognostic value of knowing the nodal status, as identified by lymphatic mapping and sentinel lymphadenectomy, in those situations where accurate staging is important.

![Fig. 24.1. Fifteen-year survival curves for the melanoma staging system, comparing localized melanoma (Stages I and II), regional metastases (Stage III), and distant metastases (Stage IV). The numbers in parentheses are the numbers of patients from the AJCC melanoma staging database used to calculate the survival rates. The differences between the curves are highly significant (p < 0.0001).](image-url)
TABLE 24.5. Five-year survival rates for Stage III (nodal metastases) patients stratified by number of metastatic nodes, ulceration, and tumor burden (adapted from Balch et al.2)

<table>
<thead>
<tr>
<th>Melanoma Ulceration</th>
<th>Microscopic % ± S.E.</th>
<th>Macroscopic % ± S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1+ Nodes</td>
<td>2–3 Nodes</td>
</tr>
<tr>
<td>Absent</td>
<td>69 ± 3.7 (n = 252)</td>
<td>63 ± 5.6 (n = 130)</td>
</tr>
<tr>
<td>Present</td>
<td>52 ± 4.1 (n = 217)</td>
<td>50 ± 5.7 (n = 111)</td>
</tr>
</tbody>
</table>

n indicates the number of patients

![Graph: 10-year Survival Rate vs T category](image)

Fig. 24.2. Ten-year survival rates from the AJCC melanoma staging database comparing the different T categories and the stage groupings for Stages I and II melanoma.² Note that the stage groupings involve upstaging to account for melanoma ulceration, where thinner melanomas with ulceration are grouped with the next greatest T Substage for non-ulcerated melanomas.

The prognostic factors used to validate the melanoma staging system should be the primary stratification criteria and the end-results reporting criteria of melanoma clinical trials. It is recommended that all melanoma patients who have clinically negative regional lymph nodes and may be considered for later entry into surgical and adjuvant therapy clinical trials should have pathologic staging with sentinel lymphadenectomy to ensure prognostic homogeneity within assigned treatment groups. In this way, investigators will be better able to discern between the natural-history impact and the treatment impact being studied in melanoma clinical trials. Moreover, the use of a consistent set of criteria will facilitate the comparability of melanoma clinical trials and thereby accelerate the progress of multidisciplinary melanoma treatment approaches.

MELANOMA GROWTH PATTERNS

The data used to derive the TNM categories were largely based on melanomas with superficial spreading and nodular growth patterns. There is some evidence that other growth
patterns, namely lentigo maligna melanoma, acral lentigious melanoma, and desmoplastic melanoma, may have a different etiology and natural history.24-27 At present, the same staging criteria should be used for melanomas with these growth patterns, even though their prognosis may differ somewhat from the more commonly occurring superficial spreading and nodular growth patterns.

REFERENCES

1. NCI Fact Book. Bethesda, MD: National Cancer Institute, 2000
12. Breslow A: Problems in the measurement of tumor thickness and level of invasion in cutaneous melanoma. Hum Pathol 8:1–2, 1977

HISTOLOGIES—MALIGNANT MELANOMA OF THE SKIN

8720/2 Melanoma in situ
8720/3 Malignant melanoma, NOS
8721/3 Nodular melanoma
8722/3 Balloon cell melanoma
8742/3 Lentigo maligna melanoma
8743/3 Superficial spreading melanoma
8744/3 Acral lentiginous melanoma, malignant
8745/3 Desmoplastic melanoma, malignant
8761/3 Malignant melanoma in giant pigmented nevus
8771/3 Epithelioid cell melanoma
8772/3 Spindle cell melanoma
8780/3 Blue nevus, malignant
MELANOMA OF THE SKIN

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen

Tumor Size

Histopathologic Type

Laterality: [] Bilateral [] Left [] Right

DEFINITIONS

#### Clinical	Pathologic
TX | Primary tumor cannot be assessed (e.g., shave biopsy or regressed melanoma)
T0 | No evidence of primary tumor
Tis | Melanoma in situ
T1 | Melanoma ≤1.0 mm with or without ulceration
T1a | Melanoma ≤1.0 mm in thickness and level II or III, no ulceration
T1b | Melanoma ≤1.0 mm in thickness and level IV or V or with ulceration
T2 | Melanoma 1.01–2.0 mm in thickness with or without ulceration
T2a | Melanoma 1.01–2.0 mm in thickness, no ulceration
T2b | Melanoma 1.01–2.0 mm in thickness, with ulceration
T3 | Melanoma 2.01–4.0 mm in thickness with or without ulceration
T3a | Melanoma 2.01–4.0 mm in thickness, no ulceration
T3b | Melanoma 2.01–4.0 mm in thickness, with ulceration
T4 | Melanoma greater than 4.0 mm in thickness with or without ulceration
T4a | Melanoma >4.0 mm in thickness, no ulceration
T4b | Melanoma >4.0 mm in thickness, with ulceration

Regional Lymph Nodes (N)

- NX: Regional lymph nodes cannot be assessed
- N0: No regional lymph node metastasis
- N1: Metastasis in one lymph node
- N1a: Clinically occult (microscopic) metastasis
- N1b: Clinically apparent (macroscopic) metastasis
- N2: Metastasis in 2 to 3 regional nodes or intralymphatic regional metastasis without nodal metastasis
- N2a: Clinically occult (microscopic) metastasis
- N2b: Clinically apparent (macroscopic) metastasis
- N2c: Satellite or in-transit metastasis without nodal metastasis
- N3: Metastasis in four or more regional nodes, or matted metastatic nodes, or in-transit metastasis or satellite(s) with metastasis in regional node(s)

Distant Metastasis (M)

- MX: Distant metastasis cannot be assessed
- M0: No distant metastasis
- M1: Distant metastasis
- M1a: Metastasis to skin, subcutaneous tissues, or distant lymph nodes
- M1b: Metastasis to lung
- M1c: Metastasis to other visceral sites or distant metastasis at any site associated with an elevated serum lactic dehydrogenase (LDH)

Biopsy of metastatic site performed: [] Y [] N

Source of pathologic metastatic specimen:

Residual Tumor (R)

- RX: Presence of residual tumor cannot be assessed
- R0: No residual tumor
- R1: Microscopic residual tumor
- R2: Macroscopic residual tumor

(continued on reverse side)
Pathologic Stage Grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tis</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II A</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II B</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III A</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III B</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III C</td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III D</td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>T1-4a</td>
<td>N1a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1-4b</td>
<td>N1b</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1-4c</td>
<td>N2a</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1-4d</td>
<td>N2b</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
</tr>
</tbody>
</table>

Clinical Stage Grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tis</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II A</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II B</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III A</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III B</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III C</td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III D</td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>Any T</td>
<td>Any N</td>
</tr>
</tbody>
</table>

Additional Descriptors

- **m suffix**: indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix**: indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix**: indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
- **a prefix**: designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

ILLUSTRATION

Indicate on diagram primary tumor and regional nodes involved.

Notes

1. Pathologic staging includes microstaging of the primary melanoma and pathologic information about the regional lymph nodes after partial or complete lymphadenectomy.
2. Clinical staging includes microstaging of the primary melanoma and clinical/radiologic evaluation for metastases. By convention, it should be used after complete excision.

Additional Descriptors

- Lymphatic Vessel Invasion (L)
 - L0: No lymphatic vessel invasion
 - L1: Lymphatic vessel invasion
- Venous Invasion (V)
 - V0: Venous invasion cannot be assessed
 - V1: Microscopic venous invasion
 - V2: Macroscopic venous invasion
PART VII
Breast
INTRODUCTION

This staging system for carcinoma of the breast applies to infiltrating (including microinvasive) and in situ carcinomas. Microscopic confirmation of the diagnosis is mandatory, and the histologic type and grade of carcinoma should be recorded.

ANATOMY

Primary Site. The mammary gland, situated on the anterior chest wall, is composed of glandular tissue with a dense fibrous stroma. The glandular tissue consists of lobules that group together into 15–25 lobes arranged approximately in a spoke-like pattern. Multiple major and minor ducts connect the milk-secreting lobular units to the nipple. Small milk ducts course throughout the breast, converging into larger collecting ducts that open into the lactiferous sinus at the base of the nipple. Most cancers form initially in the terminal duct lobular units of the breast. Glandular tissue is more abundant in the upper outer portion of the breast; as a result, half of all breast cancers occur in this area.

Chest Wall. The chest wall includes ribs, intercostal muscles, and serratus anterior muscle, but not the pectoral muscles.
Regional Lymph Nodes. The breast lymphatics drain by way of three major routes: axillary, transpectoral, and internal mammary. Intramammary lymph nodes are coded as axillary lymph nodes for staging purposes. Supracavicular lymph nodes are classified as regional lymph nodes for staging purposes. Metastasis to any other lymph node, including cervical or contralateral internal mammary lymph nodes, is classified as distant (M1) (refer to Fig. 25.1.)

The regional lymph nodes are as follows:

1. Axillary (ipsilateral): interpectoral (Rotter’s) nodes and lymph nodes along the axillary vein and its tributaries that may be (but are not required to be) divided into the following levels:
 a. Level I (low-axilla): lymph nodes lateral to the lateral border of pectoralis minor muscle.
 b. Level II (mid-axilla): lymph nodes between the medial and lateral borders of the pectoralis minor muscle and the interpectoral (Rotter’s) lymph nodes.
 c. Level III (apical axilla): lymph nodes medial to the median margin of the pectoralis minor muscle, including those designated as apical.
2. Internal mammary (ipsilateral): lymph nodes in the intercostal spaces along the edge of the sternum in the endorathoracic fascia.
3. Supracavicular: lymph nodes in the supracavicular fossa, a triangle defined by the omohyoid muscle and tendon (lateral and superior border), the internal jugular vein (medial border), and the clavicle and subclavian vein (lower border). Adjacent lymph nodes outside of this triangle are considered to be lower cervical nodes (M1).

Metastatic Sites. Tumor cells may be disseminated by either the lymphatic or the blood vascular system. The four major sites of involvement are bone, lung, brain, and liver, but tumor cells are also capable of metastasizing to many other sites.

RULES FOR CLASSIFICATION

Clinical Staging. Clinical staging includes physical examination, with careful inspection and palpation of the skin, mammary gland, and lymph nodes (axillary, supracavicular, and cervical), imaging, and pathologic examination of the breast or other tissues as appropriate to establish the diagnosis of breast carcinoma. The extent of tissue examined pathologically for clinical staging is not so great as that required for pathologic staging (see Pathologic Staging below). Imaging findings are considered elements of staging if they are collected within 4 months of diagnosis in the absence of disease progression or through completion of surgery/ies, whichever is longer. Such imaging findings would include the size of the primary tumor and of chest wall invasion, and the presence or absence of regional or distant metastasis. Im-

![Fig. 25.1. Schematic diagram of the breast and regional lymph nodes.](image_url)
aging findings and surgical findings obtained after a patient has been treated with neoadjuvant chemotherapy, hormonal therapy, immunotherapy, or radiation therapy are not considered elements of initial staging.

Pathologic Staging. Pathologic staging includes all data used for clinical staging, plus data from surgical exploration and resection as well as pathologic examination of the primary carcinoma, regional lymph nodes, and metastatic sites (if applicable), including not less than excision of the primary carcinoma with no macroscopic tumor in any margin of resection by pathologic examination. A cancer can be classified pT for pathologic stage grouping if there is only microscopic, but not macroscopic, involvement at the margin. If there is tumor in the margin of resection by macroscopic examination, the cancer is coded pTX because the total extent of the primary tumor cannot be assessed. If the primary tumor is invasive and not only microinvasive, resection of at least the low axillary lymph nodes (Level I)—that is, those lymph nodes located lateral to the lateral border of the pectoral minor muscle—should be performed for pathologic (pN) classification. Such a resection will ordinarily include six or more lymph nodes. Alternatively, one or more sentinel lymph nodes may be resected and examined for pathologic classification. Certain histologic tumor types (pure tubular carcinoma < 1 cm, pure mucinous carcinoma < 1 cm, and microinvasive carcinoma) have a very low incidence of axillary lymph node metastases and do not usually require an axillary lymph node dissection. Cancerous nodules in the axillary fat adjacent to the breast, without histologic evidence of residual lymph node tissue, are classified as regional lymph node metastases (N). Pathologic stage grouping includes any of the following combinations of pathologic and clinical classifications: pT pN PM or pT pN CM, or CT C N PM. If surgery occurs after the patient has received neoadjuvant chemotherapy, hormonal therapy, immunotherapy, or radiation therapy, the prefix "y" should be used with the TNM classification, e.g., ypTNM.

TNM CLASSIFICATION

Primary Tumor (T)

Determining Tumor Size
The clinical measurement used for classifying the primary tumor (T) is the one judged to be most accurate for that particular case (that is, physical examination or imaging such as mammography or ultrasound). The pathologic tumor size for the T classification is a measurement of only the invasive component. For example, if there is a 4.0-cm intraductal component and a 0.3-cm invasive component, the tumor is classified T1a. The size of the primary tumor is measured for T classification before any tissue is removed for special studies, such as for estrogen receptors. In patients who have received multiple core biopsies, measuring only the residual lesion may result in significantly underclassifying the T component and thus understaging the tumor. In such cases, original tumor size should be reconstructed on the basis of a combination of imaging and all histologic findings.

Tis Classification
Carcinoma in situ, with no evidence of an invasive component, is classified as Tis, with a subclassification indicating type. Cases of ductal carcinoma in situ and cases with both ductal carcinoma in situ and lobular carcinoma in situ are classified Tis (DCIS). Lobular carcinoma in situ is increasingly defined as a risk factor for subsequent breast cancer, although there is some evidence that it may occasionally be a precursor of invasive lobular carcinoma. For example, this may be the case with LCIS with more atypical cytology (pleomorphic) as well as more extensive and locally distorting examples of well-developed LCIS. Regardless of this controversy, LCIS is reported as a malignancy by national database registrars and should be designated as such in this classification system—e.g., Tis (LCIS). Paget’s disease of the nipple without an associated tumor mass (clinical) or invasive carcinoma (pathologic) is classified Tis (Paget’s). Paget’s disease with a demonstrable mass (clinical) anywhere within that breast or an invasive component (pathologic) is classified according to the size of the tumor mass or invasive component.

Microinvasion of Breast Carcinoma
Microinvasion is the extension of cancer cells beyond the basement membrane into the adjacent tissues with no focus more than 0.1 cm in greatest dimension. When there are multiple foci of microinvasion, the size of only the largest focus is used to classify the microinvasion. (Do not use the sum of all the individual foci.) The presence of multiple foci of microinvasion should be noted and/or quantified, as it is with multiple larger invasive carcinomas.

Multiple Simultaneous Ipsilateral Primary Carcinomas
The following guidelines are used in classifying multiple simultaneous ipsilateral primary (infiltrating, macroscopically measurable) carcinomas. These criteria do not apply to one macroscopic carcinoma associated with multiple separate microscopic foci. Most conservatively, tumors are defined as arising independently only if they occur in different quadrants of the breast.

1. Use the largest primary carcinoma to designate T classification. Do not assign a separate T classification for the smaller tumor(s).
2. Enter into the record that this is a case of multiple simultaneous ipsilateral primary carcinomas. The outcome of such cases should be analyzed separately.

Simultaneous Bilateral Breast Carcinomas
Each carcinoma is staged as a separate primary carcinoma in a separate organ.

Inflammatory Carcinoma
Inflammatory carcinoma is a clinicopathologic entity characterized by diffuse erythema and edema (peau d’orange) of
the breast, often without an underlying palpable mass. These clinical findings should involve the majority of the skin of the breast. Classically, the skin changes arise quickly in the affected breast. Thus the term inflammatory carcinoma should not be applied to a patient with neglected locally advanced cancer of the breast presenting late in the course of her disease. On imaging, there may be a detectable mass and characteristic thickening of the skin over the breast. This clinical presentation is due to tumor emboli within dermal lymphatics, which may or may not be apparent on skin biopsy. The tumor of inflammatory carcinoma is classified T4d. It is important to remember that inflammatory carcinoma is primarily a clinical diagnosis. Involvement of the dermal lymphatics alone does not indicate inflammatory carcinoma in the absence of clinical findings. In addition to the clinical picture, however, a biopsy is still necessary to demonstrate cancer either within the dermal lymphatics or in the breast parenchyma itself.

Skin of Breast
Dimpling of the skin, nipple retraction, or any other skin change except those described under T4b and T4d may occur in T1, T2, or T3 without changing the classification.

Regional Lymph Nodes (N)

Macrometastasis
Cases in which regional lymph nodes cannot be assessed (previously removed or not removed for pathologic examination) are designated NX or pNX. Cases in which no regional lymph node metastasis is detected are designated N0 or pN0.

In patients who are clinically node-positive, N1 designates metastasis to one or more movable ipsilateral axillary lymph nodes, N2a designates metastasis to axillary lymph nodes that are fixed to each other (matted) or to other structures, and N3a indicates metastasis to ipsilateral infraclavicular lymph nodes. Metastasis to the ipsilateral internal mammary nodes are designated as N2b when they are detected by imaging studies (including CT scan and ultrasound, but excluding lymphoscintigraphy) or by clinical examination and when they do not occur in conjunction with metastasis to the axillary lymph nodes. Metastases to the ipsilateral internal mammary nodes are designated as N3b when they are detected by imaging studies or by clinical examination and when they occur in conjunction with metastasis to the axillary lymph nodes. Metastasis to the ipsilateral supraclavicular lymph nodes are designated as N3c regardless of the presence or absence of axillary or internal mammary nodal involvement.

In patients who are pathologically node-positive with one or more tumor deposits greater than 2 mm, cases with 1 to 3 positive axillary lymph nodes are classified pN1a, cases with 4 to 9 positive axillary lymph nodes are classified pN2a, and cases with 10 or more positive axillary lymph nodes are classified pN3a. Cases with histologically confirmed metastasis to the internal mammary nodes, detected by sentinel lymph node dissection but not by imaging studies (excluding lymphoscintigraphy) or clinical examination, are classified as pN1b if occurring in the absence of metastasis to the axillary lymph nodes and as pN1c if occurring in the presence of metastases to 1 to 3 axillary lymph nodes. (If 4 or more axillary lymph nodes are involved, the classification pN3b is used.) Clinical involvement with histologic confirmation of the internal mammary nodes by imaging studies (excluding lymphoscintigraphy) in the absence or presence of axillary nodal metastases are classified as pN2b and pN3b, respectively. Histologic evidence of metastasis in ipsilateral supraclavicular lymph node(s) is classified as pN3c. A classification of pN3, regardless of primary tumor size or grade, is classified as Stage IIIIC. A case in which the classification is based only on sentinel lymph node dissection is given the additional designation (sn) for “sentinel node”—for example, pN1(sn). For a case in which an initial classification is based on a sentinel lymph node dissection but a standard axillary lymph node dissection is subsequently performed, the classification is based on the total results of the axillary lymph node dissection (that is, including the sentinel node).

Isolated Tumor Cells and Micrometastases
Isolated tumor cells (ITCs) are defined as single cells or small clusters of cells not greater than 0.2 mm in largest dimension, usually with no histologic evidence of malignant activity (such as proliferation or stromal reaction). If an additional immunohistochemical examination was made for ITCs in a patient with histologically negative lymph nodes, the regional lymph nodes should be designated as pN0(i−) or pN0(i+), as appropriate.

Micrometastases are defined as tumor deposits greater than 0.2 mm but not greater than 2.0 mm in largest dimension that may have histologic evidence of malignant activity (such as proliferation or stromal reaction). Cases in which only micrometastases are detected (none greater than 2 mm) are classified pN1mi. The classification is designated as (i+) for “immunohistochemical” if micrometastasis was detected only by IHC [e.g., pN1mi (i+)].

If histologically and immunohistochemically negative lymph nodes are examined for evidence of metastasis using molecular methods (reverse transcriptase–polymerase chain reaction (RT-PCR)), the regional lymph nodes are classified as pN0(mol−) or pN0(mol+), as appropriate.

Distant Metastasis (M)
Cases where distant metastasis cannot be assessed are designated MX, cases in which there is no distant metastasis are designated M0, and cases in which one or more distant metastases are identified are designated M1. A negative clinical history and examination are sufficient to designate a case as M0; extensive imaging or other testing is not required. Note that positive supraclavicular lymph nodes are now classified as N3 rather than M1.
DEFINITION OF TNM

Primary Tumor (T)
Definitions for classifying the primary tumor (T) are the same for clinical and for pathologic classification. If the measurement is made by physical examination, the examiner will use the major headings (T1, T2, or T3). If other measurements, such as mammographic or pathologic measurements, are used, the subsets of T1 can be used. Tumors should be measured to the nearest 0.1 cm increment.

<table>
<thead>
<tr>
<th>TX</th>
<th>Primary tumor cannot be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis (DCIS)</td>
<td>Ductal carcinoma in situ</td>
</tr>
<tr>
<td>Tis (LCIS)</td>
<td>Lobular carcinoma in situ</td>
</tr>
<tr>
<td>Tis (Paget’s)</td>
<td>Paget’s disease of the nipple with no tumor</td>
</tr>
</tbody>
</table>

Note: Paget’s disease associated with a tumor is classified according to the size of the tumor.

T1	Tumor 2 cm or less in greatest dimension
T1mic	Microinvasion 0.1 cm or less in greatest dimension
T1a	Tumor more than 0.1 cm but not more than 0.5 cm in greatest dimension
T1b	Tumor more than 0.5 cm but not more than 1 cm in greatest dimension
T1c	Tumor more than 1 cm but not more than 2 cm in greatest dimension
T2	Tumor more than 2 cm but not more than 5 cm in greatest dimension
T3	Tumor more than 5 cm in greatest dimension
T4	Tumor of any size with direct extension to (a) chest wall or (b) skin, only as described below
T4a	Extension to chest wall, not including pectoralis muscle
T4b	Edema (including peau d’orange) or ulceration of the skin of the breast, or satellite skin nodules confined to the same breast
T4c	Both T4a and T4b
T4d	Inflammatory carcinoma

Regional Lymph Nodes (N)

Clinical

NX	Regional lymph nodes cannot be assessed (e.g., previously removed)
N0	No regional lymph node metastasis
N1	Metastasis to movable ipsilateral axillary lymph node(s)
N2	Metastases in ipsilateral axillary lymph nodes fixed or matted, or in clinically apparent ipsilateral internal mammary nodes in the absence of clinically evident axillary lymph node metastasis
N2a	Metastasis in ipsilateral axillary lymph nodes fixed to one another (matted) or to other structures

| N2b | Metastasis only in clinically apparent ipsilateral internal mammary nodes and in the absence of clinically evident axillary lymph node metastasis |
| N3 | Metastasis in ipsilateral infraclavicular lymph node(s) with or without axillary lymph node involvement, or in clinically apparent ipsilateral internal mammary lymph node(s) and in the presence of clinically evident axillary lymph node metastasis; or metastasis in ipsilateral supraclavicular lymph node(s) with or without axillary or internal mammary lymph node involvement |

* Clinically apparent is defined as detected by imaging studies (excluding lymphoscintigraphy) or by clinical examination or grossly visible pathologically.

Pathologic (pN):

| pNX | Regional lymph nodes cannot be assessed (e.g., previously removed, or not removed for pathologic study) |
| pN0 | No regional lymph node metastasis histologically, no additional examination for isolated tumor cells (ITC) |

Note: Isolated tumor cells (ITC) are defined as single tumor cells or small cell clusters not greater than 0.2 mm, usually detected only by immunohistochemical (IHC) or molecular methods but which may be verified on H&E stains. ITCs do not usually show evidence of malignant activity e.g., proliferation or stromal reaction.

pN0(i−)	No regional lymph node metastasis histologically, negative IHC
pN0(i+)	No regional lymph node metastasis histologically, positive IHC, no IHC cluster greater than 0.2 mm
pN0(mol−)	No regional lymph node metastasis histologically, negative molecular findings (RT-PCR)*
pN0(mol+)	No regional lymph node metastasis histologically, positive molecular findings (RT-PCR)*

*Classification is based on axillary lymph node dissection with or without sentinel lymph node dissection. Classification based solely on sentinel lymph node dissection without subsequent axillary lymph node dissection is designated (sn) for “sentinel node,” e.g., pN0(i+) (sn).

RT-PCR: reverse transcriptase/polymerase chain reaction.
Metastasis in 1 to 3 axillary lymph nodes, and/or in internal mammary nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent**

Micrometastasis (greater than 0.2 mm, none greater than 2.0 mm)

Metastasis in 1 to 3 axillary lymph nodes

Metastasis in internal mammary nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent**

Metastasis in 1 to 3 axillary lymph nodes and in internal mammary lymph nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent**

(If associated with greater than 3 positive axillary lymph nodes, the internal mammary nodes are classified as pN3b to reflect increased tumor burden)

Metastasis in 4 to 9 axillary lymph nodes, or in clinically apparent* internal mammary lymph nodes in the absence of axillary lymph node metastasis

Metastasis in 4 to 9 axillary lymph nodes (at least one tumor deposit greater than 2.0 mm)

Metastasis in clinically apparent* internal mammary lymph nodes in the absence of axillary lymph node metastasis

Metastasis in 10 or more axillary lymph nodes, or in infraclavicular lymph nodes, or in clinically apparent* ipsilateral internal mammary lymph nodes in the presence of 1 or more positive axillary lymph nodes; or in more than 3 axillary lymph nodes with clinically negative microscopic metastasis in internal mammary lymph nodes; or in ipsilateral supraclavicular lymph nodes

Metastasis in 10 or more axillary lymph nodes (at least one tumor deposit greater than 2.0 mm), or metastasis to the infraclavicular lymph nodes

Metastasis in clinically apparent* ipsilateral internal mammary lymph nodes in the presence of 1 or more positive axillary lymph nodes; or in more than 3 axillary lymph nodes and in internal mammary lymph nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent**

Metastasis in ipsilateral supraclavicular lymph nodes

**Not clinically apparent is defined as not detected by imaging studies (excluding lymphoscintigraphy) or by clinical examination.

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis

<table>
<thead>
<tr>
<th>STAGE GROUPING</th>
<th>T1</th>
<th>T0</th>
<th>N3</th>
<th>N2</th>
<th>N1</th>
<th>N0</th>
<th>M0</th>
<th>M1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>Tis</td>
<td></td>
<td>N0</td>
<td></td>
<td></td>
<td></td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Stage I</td>
<td>T1</td>
<td></td>
<td>N0</td>
<td></td>
<td></td>
<td></td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T0</td>
<td>N1</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td></td>
<td>N1</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N0</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T2</td>
<td>N1</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>T0</td>
<td>N2</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1</td>
<td>N2</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N2</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N2</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>T4</td>
<td>N0</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N1</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N2</td>
<td></td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>N3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M1</td>
</tr>
</tbody>
</table>

*T1 includes T1mic

Note: Stage designation may be changed if post-surgical imaging studies reveal the presence of distant metastases, provided that the studies are carried out within 4 months of diagnosis in the absence of disease progression and provided that the patient has not received neoadjuvant therapy.

HISTOPATHOLOGIC TYPE

The histopathologic types are the following:

In situ Carcinomas
NOS (not otherwise specified)
Intraductal
Paget's Disease and intraductal

Invasive Carcinomas
NOS
Ductal
Inflammatory
Medullary, NOS
Medullary with lymphoid stroma
Mucinous
Papillary (predominantly micropapillary pattern)
Tubular
Lobular
Paget’s Disease and infiltrating
Undifferentiated
Squamous cell
Adenoid cystic
Secretory
Cribriform

HISTOLOGIC GRADE (G)

All invasive breast carcinomas with the exception of medullary carcinoma should be graded. The Nottingham combined histologic grade (Elston-Ellis modification of Scarff-Bloom-Richardson grading system) is recommended. The grade for a tumor is determined by assessing morphologic features (tubule formation, nuclear pleomorphism, and mitotic count), assigning a value of 1 (favorable) to 3 (unfavorable) for each feature, and adding together the scores for all three categories. A combined score of 3–5 points is designated as grade 1; a combined score of 6–7 points is grade 2; a combined score of 8–9 points is grade 3.

HISTOLOGIC GRADE (NOTTINGHAM COMBINED HISTOLOGIC GRADE IS RECOMMENDED)

GX Grade cannot be assessed
G1 Low combined histologic grade (favorable)
G2 Intermediate combined histologic grade (moderately favorable)
G3 High combined histologic grade (unfavorable)

CONSIDERATIONS FOR EVIDENCE-BASED CHANGES TO THE AJCC CANCER STAGING MANUAL, 6TH EDITION

Should histologic grade (Nottingham combined histologic grade recommended) be incorporated into the TNM classification system?

It was first recognized by Hansemann in 1890 that the morphological appearance of tumors was associated with the degree of malignancy, and the first formal grading of morphologic features in breast cancer occurred 35 years later. Since then, the histologic grading of invasive breast carcinoma has been clearly shown to provide significant prognostic information. Different approaches to histologic grading have been described and used. Though all of these approaches offer some degree of prognostic information, there are varying levels of agreement among them, and this makes clinical studies difficult to compare. In addition, grading is by nature subjective, and there can be substantial differences in assessment even when the same grading system is used.

Several observers have pointed out that observer variation in estimating histologic grade may have only a small adverse effect in estimating prognosis, especially if the variation in outcome is greater than the variation among observers. This may be true in a general way, but it should be remembered that the inclusion of histologic grade in the AJCC staging system will affect data collection and coding for national cancer registrars. Institute-to-institute reproducibility will be an important requirement for data inclusion in these large databases.

The modification of the Bloom and Richardson grading system by Elston and Ellis (the Nottingham combined histologic grade) was designed to make grading criteria more quantitative. Three morphologic features (percentage of tubule formation, degree of nuclear pleomorphism, and accurate mitotic count in a defined field area) are evaluated semiquantitatively, and a numerical score for each is used in calculating the overall grade. Elston and Ellis compiled long-term survival information from 1,831 patients for whom a Nottingham combined histologic grade was assessed, and they found a very strong correlation with prognosis ($p < 0.0001$). In subsequent studies, better interobserver agreement was obtained with the Nottingham combined histologic grade than with previous systems, and it is recommended in the College of American Pathologists Consensus Statement. Thus the Nottingham combined histologic grade is strongly recommended in this revision for the histologic grading of tumors.

Even with this more quantitative approach, significant variation in results can stem from technical variations in processing the tumor tissue. The time lag between surgical excision and fixation can vary greatly from one case to another (from 10 min to 4 hr in one published study). A time lag of as little as 2 hours can result in mitotic rate decreases of 10% to 30%, and a delay of 24 hours can result in a striking decline of more than 75%. Even with fixation times standardized, the type of fixative used can also be an important element; some commonly used fixatives contribute to suboptimal cell morphology. Precise guidelines about these technical details will be important in ensuring data comparability across institutes.

Thus histologic grading has prognostic value, and improved reproducibility is possible with the Nottingham combined histologic grade. The question of how to add grading to the existing TNM classification system remains. Because large tumors (T3, T4) nearly always carry a recommendation for adjuvant therapy, and because many such tumors tend to be high grade, the addition of grading information would not be expected to have a significant effect on treatment planning for this group. Most conservatively, grading should be considered in those cases where it would influence treatment decisions most heavily—that is, for small (T1, T2) node-negative tumors. It is unfortunate, therefore, that available evidence about the interaction between tumor size and histologic grade as they relate to patient outcome is disappointingly meager for these small tumors.

Table 25.1 shows the results of eight retrospective studies that analyzed outcome data on the basis of histologic grade in small tumors. Because of the variety of follow-up
TABLE 25.1. Histologic grade and outcome in patients with early-stage breast cancer.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Patient Description</th>
<th>Number of patients</th>
<th>Follow-up (years)</th>
<th>Grading System</th>
<th>Outcome Measured</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosen et al., 1989</td>
<td>T1, N0</td>
<td>644</td>
<td>20</td>
<td>NS</td>
<td>Relapse</td>
<td>Grade 1</td>
</tr>
<tr>
<td>Henson et al., 1991</td>
<td>T1, N0 or T0, N1</td>
<td>22616</td>
<td>10</td>
<td>NS</td>
<td>Relative survival</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Rosner & Lane, 1991</td>
<td>T1a/b</td>
<td>113</td>
<td>7</td>
<td>BR</td>
<td>DFR</td>
<td>Grade 3</td>
</tr>
<tr>
<td>Rosner & Lane, 1991</td>
<td>T1c</td>
<td>125</td>
<td>7</td>
<td>BR</td>
<td>DFR</td>
<td></td>
</tr>
<tr>
<td>Rosner & Lane, 1991</td>
<td>T2</td>
<td>132</td>
<td>7</td>
<td>BR</td>
<td>DFR</td>
<td></td>
</tr>
<tr>
<td>Rosner & Lane, 1991</td>
<td>T1/2, N1 or T2, N0</td>
<td>877</td>
<td>5</td>
<td>N</td>
<td>OS</td>
<td></td>
</tr>
<tr>
<td>Genestie et al., 1998</td>
<td>T1/2, N0/1</td>
<td>318</td>
<td>10</td>
<td>N</td>
<td>OS</td>
<td></td>
</tr>
<tr>
<td>Kollias et al., 1995</td>
<td>T1a/b</td>
<td>218</td>
<td>7</td>
<td>WHO</td>
<td>RFS</td>
<td></td>
</tr>
<tr>
<td>Leitner et al., 1998</td>
<td>T1a/b</td>
<td>228</td>
<td>10</td>
<td>WHO</td>
<td>DDFS</td>
<td></td>
</tr>
<tr>
<td>Reed et al., 2000</td>
<td>T1/2, N0</td>
<td>665</td>
<td>7</td>
<td>WHO</td>
<td>RFS</td>
<td></td>
</tr>
<tr>
<td>Lundin et al., 2001</td>
<td>T1, N0</td>
<td>877</td>
<td>5</td>
<td>WHO</td>
<td>DDFT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2, N0</td>
<td>318</td>
<td>10</td>
<td>WHO</td>
<td>DDFT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3, N0</td>
<td>244</td>
<td>5</td>
<td>WHO</td>
<td>DDFT</td>
<td></td>
</tr>
</tbody>
</table>

*NS: grading system not specified; BR: Bloom-Richardson; N: Nottingham combined histologic grade; WHO: World Health Organization
*DFR: disease-free rate; OS: overall survival; MFS: metastasis-free survival; RFS: relapse-free survival; DDFT: distant-disease-free survival
*Original Grades 3 and 4 showed no significant difference and were collapsed into Grade 3 for this review.
*Original Grades 1 and 2 were collapsed into one category in the original study.

Times, grading systems, patient samples, and measured outcomes, it is difficult to extract a consistent picture from these studies. All studies showed a difference between Grade 1 and Grade 3, but the positioning of the Grade 2 intermediate tumors varied, sometimes clustering with Grade 1 and at other times clustering with Grade 3. In those studies that specifically used the Nottingham combined histologic grade, grade 2 either clustered with Grade 3 or else was intermediate between Grades 1 and 3 for a variety of outcomes. Three studies specifically looked at T1a/b tumors. These studies used three different histologic grading systems and three different outcomes, but they nonetheless showed somewhat smaller outcome differences between Grade 1 and Grade 3 than other studies that included larger tumors.

These tentative observations, coupled with the overall sparseness and variability of the information, strongly suggest that the available data are not yet mature enough to offer guidance in incorporating histologic grade into the staging system for breast cancer. Because the evidence indicating that histologic grade is an important prognostic factor in breast cancer is so robust, it seems certain that emerging data will support the incorporation of grade into the AJCC staging system in the near future.

Should the classification of pathologic lymph node status in node-negative patients be amplified to include information about isolated tumor cells detected by immunohistochemical techniques?

Isolated tumor cells (ITCs) are defined as single tumor cells or small clusters of cells that are not greater than 0.2 mm in size and that usually show no histologic evidence of malignant activity (such as proliferation or stromal reaction). Although there is a growing feeling that ITCs detected by immunohistochemical staining may be prognostically relevant, their clinical significance has not yet been demonstrated. Even with larger clusters of single cells, it is not clear whether a finding of ITC would justify an auxiliary lymph node dissection. This is especially true for ITCs found in sentinel lymph nodes in cases where the primary tumor is very small and the probability of metastasis in a non-sentinel lymph node seems to be virtually zero.

Clearly, organized large-scale data collection is essential for determining the clinical significance of ITCs. For this reason, a uniform shorthand is now suggested for describing pN0 patients where there has been immunohistochemical examination for ITCs. The added designation of “i+” or “i-” indicates that immunohistochemical staining was performed with positive or negative results.

Should micrometastases (pN1mi) detected by immunohistochemical staining and not verified by H&E staining be classified as pN1?

Micrometastases are defined as tumor deposits greater than 0.2 mm and no greater than 2.0 mm in size. Unlike isolated tumor cells, micrometastases may show histologic evidence of metastatic activity, such as proliferation or stromal reaction. The use of immunohistochemical techniques (IHC) to detect occult micrometastases has increased dramatically with the growing acceptance of sentinel lymph node dissection. The reported incidence of nodal micrometastases detected by IHC in patients who are histologically node-negative has ranged from 12% to 29%.

The unresolved issue is whether micrometastases detected by IHC and not verified by standard histologic staining have a significant impact on patient outcome. Retrospective
studies have reported decreases in disease-free survival ranging from 10% to 22% in some subgroups of patients where micrometastatic axillary disease was detected by immunohistochemical techniques. A significant percentage of histologically node-negative patients ultimately experience distant recurrence and die of their disease, and it has been suggested that some of this subgroup of patients may be those with occult micrometastases in the axillary nodes, but bone marrow and other metastases may occur with no axillary involvement.29,31,35

The premise that H&E verification is required to validate the metastatic potential of lesions detected by IHC is under increasing scrutiny. Cell deposits identified only by IHC are increasingly being used to make clinical recommendations without H&E verification. The size of the micrometastatic focus may prove to be critical; a 1-mm IHC-positive lesion may contain as many as 500,000 cells, and this would clearly meet the proliferation requirement for metastatic potential, regardless of H&E verification. Nonetheless, verification by H&E staining is recommended by the College of American Pathologists, because it provides more definitive cytologic and histologic evidence of malignancy than is usually available from immunostained preparations and avoids overinterpretation of staining artifacts.

Should size criteria be used to distinguish between isolated tumor cells and micrometastases?

Isolated tumor cells should theoretically be distinguishable from micrometastases on the basis of metastatic characteristics, such as proliferation or stromal reaction.34 This distinction can be highly subjective, however, and replication among pathologists and among institutions may be difficult. This revision incorporates size criteria to assist in making this distinction, with isolated tumor cell groups defined as not greater than 0.2 mm in diameter and micrometastases defined as greater than 0.2 mm and not greater than 2.0 mm in diameter. The use of 2.0 mm as an upper size limit for micrometastases, originally proposed by Huvos and colleagues in 1971,35 is consistent with standards already used in the AJCC staging system. The use of 0.2 mm as a lower limit was selected because it significantly reduces the likelihood that ITCs will be recorded as micrometastases. Without making it necessary to estimate actual cell number counts in ITCs, the resulting classification of patients with metastatic tumor deposits no greater than 0.2 mm as pN0 is consistent with the low recurrence rates typically seen in this patient group.

How should RT-PCR be used in the detection of small tumor deposits?

An even finer level of resolution in the detection of isolated tumor cells and micrometastases is potentially available with the use of reverse transcriptase–polymerase chain reaction (RT-PCR). Verbanac and colleagues86 recently reported that this technique was able to identify a neoplastic marker in a significant percentage of sentinel nodes that were negative for disease by both histologic and immunohistochemical staining. This is not altogether surprising, given that RT-PCR is theoretically capable of identifying single cells. However, it seems unlikely that such cells would become clinically important. There is evidence that such highly sensitive tests produce false positive results. Furthermore, because an entire block of lymph node tissue is digested in preparation for RT-PCR, it would be technically challenging to determine the exact size of the original lesion.

Pending further developments in this area, this edition of the AJCC Cancer Staging Manual will classify any lesion identified by RT-PCR alone as pN0 (the classification it would have had using standard histologic staining) for the purposes of staging. All cases that were histologically negative for regional lymph node metastasis and in which an additional examination for tumor cells was made with RT-PCR will have the appended designation (mol+) or (mol−), as appropriate.

Should the classification of pathological lymph node status in node-positive (all nodes with deposits greater than 0.2 mm) patients be changed to reflect more clearly the prognostic significance of number of affected nodes?

In past editions of the AJCC Cancer Staging Manual, the TNM system has used similar definitions for clinical lymph node status and pathological lymph node status. This has had the unfortunate result of assigning number of affected lymph nodes to subcategories of the pN1 classification, effectively ignoring this important prognostic indicator.

In this revision, patients with 1 to 3 positive axillary lymph nodes (with at least one tumor deposit greater than 2 mm and all tumor deposits greater than 0.2 mm) are classified as pN1a, patients with 4 to 9 positive axillary lymph nodes are classified as pN1b, and patients with 10 or more positive axillary lymph nodes are classified as pN1c. This recognition of the prognostic importance of the absolute number of involved lymph nodes is in keeping with current clinical practice and is supported by a large body of clinical data. The decision to separate patients with 1 to 3 positive nodes from patients with 4 or more positive nodes is consistent with survival data reported by Carter and colleagues (see Fig. 25.2).37 These researchers examined 5-year survival rates by tumor size and lymph node status in 24,740 breast cancer cases recorded in the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. In each size group of tumors (<2 cm, 2–5 cm, >5 cm) they found an inverse relationship between overall survival and number of positive nodes. In patients with tumors <2 cm in size, for example, the relative 5-year survival was 96.3% for patients with negative nodes, 87.4% for patients with 1 to 3 positive nodes, and 66.0% for patients with 4 or more positive nodes.

The decision to separate patients with 10 or more positive nodes into the N3a category, though somewhat more arbitrary, is based on the recognition that survival rates continue to decrease with increasing numbers of positive axillary lymph nodes. In a survey of 20,547 cases of breast carcinoma collected by the American College of Surgeons, Nemoto and colleagues85 demonstrated that expected survival declined
linearity with increasing number of axillary lymph nodes that were positive by histologic examination, up to a total of 21 positive nodes (Fig. 25.3). The specific breakpoint used here (≥ 10) is in common usage. (See, for example, the report on the NSABP B-11 protocol in Paik et al. and various other clinical studies.)

The change in classification of axillary lymph node-positive patients reorganizes the pathologic staging system to reflect more closely the current practice standards used by clinicians in stratifying patients for prognosis and treatment decisions.

Should a finding of positive internal mammary lymph nodes retain a current classification of N3?

Data from the National Cancer Data Base (1985–1991) were analyzed to compare 5-year relative survival rates in all Stage III breast cancer patients versus only Stage III breast cancer patients with positive internal mammary nodes (N3). (L.L. Douglas, personal communication.) For all Stage III breast cancers ($n = 9775$), the relative 5-year survival rate was 47.6% with a 99% confidence interval of 45.7–49.5. For Stage III breast cases with N3 only ($n = 717$), the relative survival rate was 45.2% with a 99% confidence interval of 38.6–51.9. This suggests no survival difference between N3 patients and the Stage IIIB group as a whole. In a separate report, Veronesi and colleagues reported the results of a randomized trial carried out from 1964 to 1968 in which T1–3, N0–1 breast cancer patients were treated with a Halsted mastectomy or with an extended mastectomy that included removal of the internal mammary nodes. In the 342 patients treated with extended mastectomy, the 5-year overall survival rate was 44% in patients with positive internal mammary nodes, compared with 78% in patients with negative internal mammary nodes. These survival rates are consistent with those taken from the National Cancer Data Base.

A problem with these reports is that neither one considers the independent survival effects of positive internal mammary lymph node-positive patients (IM) in the absence of positive axillary lymph nodes (AX). Table 25.2 shows the results of five studies that compared survival rates in patients who were IM–/AX+, IM+/AX–, and IM+/AX+. Although the survival rates in the first two categories were similar, there was a significant decrease in survival in patients who were IM+ and AX+.

On the basis of these findings, this revision classifies clinically positive internal mammary lymph nodes that are detected by imaging studies (including CT scan or ultrasound, but excluding lymphoscintigraphy) or by clinical examination.

Table 25.2. Survival rates in breast cancer patients as a function of nodal status in the axillary and internal mammary lymph nodes

<table>
<thead>
<tr>
<th>Author</th>
<th>N</th>
<th>IM–/AX+</th>
<th>IM+/AX–</th>
<th>Both positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucalossi et al., 1971 a</td>
<td>610</td>
<td>56</td>
<td>79</td>
<td>28</td>
</tr>
<tr>
<td>Caceres, 1967 a</td>
<td>425</td>
<td>52</td>
<td>56</td>
<td>24</td>
</tr>
<tr>
<td>Li & Shen, 1983 a</td>
<td>1242</td>
<td>60</td>
<td>73</td>
<td>38</td>
</tr>
<tr>
<td>Urban & Mariani, 1971 a</td>
<td>500</td>
<td>68</td>
<td>64</td>
<td>54</td>
</tr>
<tr>
<td>Veronesi et al., 1983 a</td>
<td>995</td>
<td>72</td>
<td>88</td>
<td>56</td>
</tr>
</tbody>
</table>

IM: Internal mammary lymph nodes; AX: axillary lymph nodes

Fig. 25.3. Survival of 20,547 women with breast cancer according to the number of histologically involved axillary nodes. (Data from Nermoto et al: Management and survival of female breast cancer: results of a national survey by the American College of Surgeons. Cancer 45:2917–2924, 1980.)
tion as N2b when they occur in the absence of positive axillary lymph nodes and as N3b when they occur in the presence of positive axillary lymph nodes. In cases where proven microscopic disease is detected in the internal mammary lymph nodes, the classification is based on whether the disease was clinically occult. For positive internal mammary nodes with microscopic disease detected by sentinel lymph node dissection but not by imaging studies (excluding lymphoscintigraphy), the pathologic classification is pN1b in the absence of positive axillary lymph nodes and is pN1c in the presence of 1 to 3 positive axillary lymph nodes. Positive internal mammary nodes discovered by sentinel lymph node dissection but in the presence of 4 or more positive axillary lymph nodes are considered pN3b to reflect the increased tumor burden. For positive internal mammary nodes with histologic microscopic disease detected by imaging studies (excluding lymphoscintigraphy) or by clinical examination, the classification is pN2b in the absence of positive axillary lymph nodes and is pN3b in the presence of positive axillary lymph nodes.

Should a finding of positive supraclavicular lymph nodes be classified as N3 rather than M1?

As early as 1907, it was recognized that clinically evident supraclavicular lymph nodes (SCLN) conferred a poor prognosis for breast cancer patients. Clinical studies carried out from 1966 to 1995 reported 5-year survival rates ranging from 5% to 34% (median 18%). The bad prognosis led to the conclusion that SCLN metastasis qualified as distant metastasis (M1) rather than as an advanced regional lymph node metastasis (N3), and this change was incorporated into the 1997 revision of the AJCC Cancer Staging Manual.

An examination of these earlier studies reveals a bias against treating patients aggressively when a positive SCLN was treated as a distant metastasis. Because patients with distant metastases are considered incurable, most studies used only locoregional therapy (surgery and/or irradiation) in the treatment of SCLN-positive patients, and such therapy was considered palliative.

A recent study by Brito and colleagues provides evidence that aggressive treatment of SCLN-positive patients results in outcomes comparable to those in patients with locally advanced breast cancer (LABC, Stage IIIb) without distant metastasis. In this study, 70 patients with SCLN-positive LABC received intensive treatment that included induction chemotherapy, surgery, post-surgical chemotherapy, and irradiation. At a median follow-up time of 8.5 years, there was no difference in disease-free survival or overall survival in LABC patients with positive SCLN and no other sign of distant metastasis compared with Stage IIIb patients without distant metastasis. Both Stage IIIb and SCLN-positive patients differed significantly in overall survival when compared with Stage IV patients (Fig. 25.4). These findings indicate that classifying SCLN as a distant metastasis may be a disservice to patients, because it implies incurability and may lead to suboptimal therapy. Patients with ipsilateral SCLN metastases and no other distant metastases should be classified as N3 rather than M1, because their clinical course and outcomes are similar to patients with stage IIIB LABC.

Are there other prognostic factors that are powerful enough to consider for inclusion in the TNM grading system?

Prognostic factors provide information about potential patient outcome in the absence of systemic therapy. These factors tend to reflect biologic characteristics of the tumor, such as proliferation, invasiveness, and metastatic capacity. Prognostic factors must be carefully distinguished from predictive factors, which reflect response to a particular therapeutic agent or combination of agents.

A clinically useful prognostic factor is one that is statistically significant (its prognostic value only rarely occurs by chance), independent (it retains its prognostic value when combined with other factors), and clinically relevant (it has a major impact on prognostic accuracy). Axillary lymph node status has been shown definitively to be the single most important prognostic factor for disease-free and overall survival in breast cancer patients.

In the Fifth Edition of the AJCC Cancer Staging Manual, it was reported that approximately 80 potential prognostic variables had been identified for human breast cancer. Since that time, additional factors have been suggested (various growth factors with their receptors and binding proteins; proteases, including cathepsin-D, urokinase-type plasminogen activator, and matrix metalloproteinases). Simultaneously, some factors that were considered promising have yielded ambiguous or disappointing results in outcome studies (p53, HER2/neu), often because technical approaches have not been standardized and data are difficult to compare between studies.

In addition to axillary lymph node status, the College of American Pathologists Consensus Report and the clinical practice guidelines from the American Society of Clinical Oncology have identified tumor size, histopathologic grade, and mitotic index as clinically useful prognostic factors. (This revision recommends the routine use of the Nottingham combined histologic grading system, which incorporates mitotic index into the measurement of tumor grade.) DNA ploidy was reported to be an unreliable prognostic marker in both studies. Estrogen receptor status, although a good predictive factor for response to hormonal therapy, is a relatively weak prognostic factor. Promising results have been reported in some cases for p53, but lack of standardization and data comparability are ongoing problems. Similar problems affect the use of HER2/neu as a prognostic factor, although it should be routinely measured in patients to predict the likelihood of their response to Herceptin should they relapse after standard adjuvant therapy. Factors such as Ki-67 continue to have technical problems that limit interuser reproducibility.

It is expected that ongoing studies will provide more definitive evidence about the clinical usefulness of many of
Fig. 25.4. (A) Estimated overall survival for patients with Stage IIIIB breast cancer compared with regional Stage IV breast cancer (ipsilateral supraclavicular adenopathy without evidence of distant disease). (B) Estimated overall survival for patients with regional Stage IV breast cancer (ipsilateral supraclavicular adenopathy without evidence of distant disease) compared with patients with Stage IV breast cancer (distant metastases). (Reprinted from Brito et al: Long-term results of combined-modality therapy for locally advanced breast cancer with ipsilateral supraclavicular metastases: The University of Texas M. D. Anderson Cancer Center experience. J Clin Oncol 19(3):628–633, 2001 with permission.)

these factors. These studies should also contribute to the standardization of assay systems and analytic approaches that will be required to achieve reproducibility among different researchers and different institutions. Such studies of promising new prognostic factors should simultaneously measure and report proven factors—particularly size, nodal status, and histologic grade—to indicate how much the new factors reflect the classic ones.

REFERENCES

41. Diab SG, Hilsenbeck SG, de Moor C, et al.: Radiation therapy and survival in breast cancer patients with 10 or more posi-

HISTOLOGIES—BREAST
8010/2 Carcinoma in situ, NOS
8010/3 Carcinoma, NOS
8020/3 Carcinoma undifferentiated, NOS
8070/3 Squamous cell carcinoma, NOS
8200/3 Adenoid cystic carcinoma
8201/2 Cribriform carcinoma in situ
8201/3 Cribriform carcinoma, NOS
8211/3 Tubular adenocarcinoma
8480/3 Mucinous adenocarcinoma
8500/2 Intraductal carcinoma, noninfiltrating, NOS
8500/3 Infiltrating duct carcinoma, NOS
8501/2 Comedocarcinoma, noninfiltrating
8502/3 Secretory carcinoma of breast
8503/2 Noninfiltrating intraductal papillary adenocarcinoma
8510/3 Medullary carcinoma, NOS
8520/2 Lobular carcinoma in situ, NOS
8520/3 Lobular carcinoma, NOS
8522/2 Intraductal carcinoma and lobular carcinoma in situ
8530/3 Inflammatory carcinoma
8540/3 Paget’s disease, mammary
8541/3 Paget’s disease and infiltrating duct carcinoma of breast
8543/2 Paget’s disease and intraductal carcinoma of breast
8980/3 Carcinosarcoma, NOS
9020/3 Phyllodes tumor, malignant
DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>TX</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T0</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>Tis</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>Tis (DCIS)</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>Tis (LCIS)</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>Tis (Paget's)</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T1</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T1mic</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T1a</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T1b</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T1c</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T2</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T3</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T4</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T4a</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T4b</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T4c</td>
</tr>
<tr>
<td>☐</td>
<td>☐</td>
<td>T4d</td>
</tr>
</tbody>
</table>

Notes

1. Clinically apparent is defined as detected by imaging studies (excluding lymphangiography) or by clinical examination.
2. Classification is based on any lymph node dissection with or without sentinel lymph node dissection. Classification based solely on sentinel lymph node dissection without subsequent axillary lymph node dissection is designated (s) for "sentinel node," e.g., pN0(s)(+)(h).
3. Isolated tumor cells (ITC) are defined as single tumor cells or small cell clusters not greater than 0.2 mm, usually detected only by immunohistochemical (IHC) or molecular methods but which may be verified on histological sections. ITCs do not usually show evidence of metastatic activity (e.g., proliferation or desmoplasia).
4. RT-PCR reverse transcription polymerase chain reaction.
5. Not clinically apparent is defined as not detected by imaging studies (excluding lymphoscintigraphy) or by clinical examination.
6. If associated with greater than 3 positive axillary lymph nodes, the internal mammary nodes are classified as pM1a to reflect increased tumor burden.
7. T4 includes Tmic.
Clinical Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY</td>
<td>Regional lymph nodes cannot be assessed (e.g., previously removed)</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Metastasis in movable ipsilateral axillary lymph node(s)</td>
</tr>
<tr>
<td>N2</td>
<td>Metastases in ipsilateral axillary lymph nodes fixed or matted, or in clinically apparent ipsilateral internal mammary nodes in the absence of clinically evident axillary lymph node metastasis</td>
</tr>
<tr>
<td>N2a</td>
<td>Metastasis in ipsilateral axillary lymph nodes fixed to one another (matted) or to other structures</td>
</tr>
<tr>
<td>N2b</td>
<td>Metastasis only in clinically apparent ipsilateral internal mammary nodes and in the absence of clinically evident axillary lymph node metastasis</td>
</tr>
<tr>
<td>N3</td>
<td>Metastasis in ipsilateral infraclavicular lymph node(s) with or without axillary lymph node involvement, or in clinically apparent ipsilateral internal mammary lymph node(s) and in the presence of clinically evident axillary lymph node metastasis; or metastasis in ipsilateral supraclavicular lymph node(s) with or without axillary or internal mammary lymph node involvement</td>
</tr>
<tr>
<td>N3a</td>
<td>Metastasis in ipsilateral infraclavicular lymph node(s) and axillary lymph node(s)</td>
</tr>
<tr>
<td>N3b</td>
<td>Metastasis in ipsilateral internal mammary lymph node(s) and axillary lymph node(s)</td>
</tr>
<tr>
<td>N3c</td>
<td>Metastasis in ipsilateral supraclavicular lymph node(s)</td>
</tr>
</tbody>
</table>

Pathologic Regional Lymph Nodes (pN)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pNX</td>
<td>Regional lymph nodes cannot be assessed (e.g., previously removed, or not removed for pathologic study)</td>
</tr>
<tr>
<td>pN0</td>
<td>No regional lymph node metastasis histologically, no additional examination for isolated tumor cells (ITC)</td>
</tr>
<tr>
<td>pN0(+)</td>
<td>No regional lymph node metastasis histologically, negative IHC</td>
</tr>
<tr>
<td>pN0(+)</td>
<td>No regional lymph node metastasis histologically, positive IHC, no IHC cluster greater than 0.2 mm</td>
</tr>
<tr>
<td>pN0(mol+)</td>
<td>No regional lymph node metastasis histologically, negative molecular findings (RT-PCR)</td>
</tr>
<tr>
<td>pN0(mol+)</td>
<td>No regional lymph node metastasis histologically, positive molecular findings (RT-PCR)</td>
</tr>
<tr>
<td>pN1</td>
<td>Metastasis in 1 to 3 axillary lymph nodes, and/or in internal mammary nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent</td>
</tr>
<tr>
<td>pN1mi</td>
<td>Micrometastasis (greater than 0.2 mm, none greater than 2.0 mm)</td>
</tr>
<tr>
<td>pN1a</td>
<td>Metastasis in 1 to 3 axillary lymph nodes</td>
</tr>
<tr>
<td>pN1b</td>
<td>Metastasis in internal mammary nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent</td>
</tr>
<tr>
<td>pN1c</td>
<td>Metastasis in 1 to 3 axillary lymph nodes and in internal mammary lymph nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent</td>
</tr>
<tr>
<td>pN2</td>
<td>Metastasis in 4 to 9 axillary lymph nodes, or in clinically apparent internal mammary lymph nodes in the absence of axillary lymph node metastasis</td>
</tr>
<tr>
<td>pN2a</td>
<td>Metastasis in 4 to 9 axillary lymph nodes (at least one tumor deposit greater than 2.0 mm)</td>
</tr>
<tr>
<td>pN2b</td>
<td>Metastasis in clinically apparent internal mammary lymph nodes in the absence of axillary lymph node metastasis</td>
</tr>
<tr>
<td>pN3</td>
<td>Metastasis in 10 or more axillary lymph nodes, or in infraclavicular lymph nodes, or in clinically apparent ipsilateral internal mammary lymph nodes in the presence of 1 or more positive axillary lymph nodes; or in more than 3 axillary lymph nodes with clinically negative microscopic metastasis in internal mammary lymph nodes; or in ipsilateral supraclavicular lymph nodes</td>
</tr>
<tr>
<td>pN3a</td>
<td>Metastasis in 10 or more axillary lymph nodes (at least one tumor deposit greater than 2.0 mm), or metastasis to the infraclavicular lymph nodes</td>
</tr>
<tr>
<td>pN3b</td>
<td>Metastasis in clinically apparent ipsilateral internal mammary lymph nodes in the presence of 1 or more positive axillary lymph nodes; or in more than 3 axillary lymph nodes and in internal mammary lymph nodes with microscopic disease detected by sentinel lymph node dissection but not clinically apparent</td>
</tr>
<tr>
<td>pN3c</td>
<td>Metastasis in ipsilateral supraclavicular lymph nodes</td>
</tr>
</tbody>
</table>

238

American Joint Committee on Cancer • 2002
Clinical	**Pathologic**	**Distant Metastasis (M)**
□ | □ | MX | Distant metastasis cannot be assessed
□ | □ | M0 | No distant metastasis
□ | □ | M1 | Distant metastasis

Biopsy of metastatic site performed... □ Y... □ N
Source of pathologic metastatic specimen

Stage Grouping

<table>
<thead>
<tr>
<th>0</th>
<th>Tis</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1(1)</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II A</td>
<td>T0</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1(2)</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III A</td>
<td>T0</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1(3)</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>III B</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>IIIC</td>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Note: Stage designation may be changed if post-surgical imaging studies reveal the presence of distant metastases, provided that the studies are carried out within 4 months of diagnosis in the absence of disease progression and provided that the patient has not received neoadjuvant therapy.

Histologic Grade (G)

All invasive breast carcinomas with the exception of medullary carcinoma should be graded. The Nottingham combined histologic grade (Elston-Ellis modification of Scarff-Bloom-Richardson grading system) is recommended. The grade for a tumor is determined by assessing morphologic features (tubule formation, nuclear pleomorphism, and mitotic count), assigning a value of 1 (favorable) to 3 (unfavorable) for each feature, and adding together the scores for all three categories. A combined score of 3–5 points is designated as grade 1; a combined score of 6–7 points is grade 2; a combined score of 8–9 points is grade 3.

Histologic Grade (Nottingham combined histologic grade is recommended)

- □ GX | Grade cannot be assessed
- □ G1 | Low combined histologic grade (favorable)
- □ G2 | Intermediate combined histologic grade (moderately favorable)
- □ G3 | High combined histologic grade (unfavorable)

Residual Tumor (R)

- □ RX | Presence of residual tumor cannot be assessed
- □ R0 | No residual tumor
- □ R1 | Microscopic residual tumor
- □ R2 | Macroscopic residual tumor
Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "p," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix** indicates those cases in which classification is performed during or following initial multi-modality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
- **a prefix** designates the stage determined at autopsy: aTNM.

Prognostic indicators (if applicable)

ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.

Schematic diagram of breast and regional lymph nodes:
1. Low axillary, Level I
2. Mids-axillary, Level II
3. High axillary, apical, Level III
4. Supravacular
5. Internal mammary nodes

Physician's Signature __________________________ Date ________________________

Notes

- **Lymphatic vessel invasion (L)**
- **Lx** Lymphatic vessel invasion cannot be assessed
- **Lo** No lymphatic vessel invasion
- **L1** Lymphatic vessel invasion
- **V** Venous invasion
- **Vx** Venous invasion cannot be assessed
- **Vo** No venous invasion
- **V1** Microscopic venous invasion
- **V2** Macroscopic venous invasion
PART VIII

Gynecologic Sites

Cervix uteri, corpus uteri, ovary, vagina, vulva, fallopian tube, and gestational trophoblastic tumors are the sites included in this section. Cervix uteri and corpus uteri were among the first sites to be classified by the TNM system. The League of Nations stages for carcinoma of the cervix were first introduced more than 70 years ago, and since 1937 the Fédération Internationale de Gynécologie et d'Obstétrique (FIGO) has continued to modify these staging systems and collect outcomes data from throughout the world. The TNM categories have therefore been defined to correspond to the FIGO stages. Some amendments have been made in collaboration with FIGO, and the classifications now published have the approval of FIGO, the American Joint Committee on Cancer (AJCC), and all other national TNM committees of the International Union Against Cancer (UICC).
ANATOMY

Primary Site. The vulva is the anatomic area immediately external to the vagina. It includes the labia and the perineum. The tumor may extend to involve the vagina, urethra or anus. It may be fixed to the pubic bone.

Regional Lymph Nodes. The femoral and inguinal nodes are the sites of regional spread. For pN, histologic examination of an inguinal lymphadenectomy specimen will ordinarily include six or more lymph nodes. Negative pathologic examination of a lesser number of nodes still mandates a pN0 designation. The concept of sentinel lymph node mapping where only one or two key nodes are removed is currently being investigated.

Metastatic Sites. The metastatic sites include any site beyond the area of the regional lymph nodes. Tumor involvement of pelvic lymph nodes, including internal iliac, external iliac, and common iliac lymph nodes, is considered distant metastasis.

RULES FOR CLASSIFICATION

Clinical Staging. Cases should be classified as carcinoma of the vulva when the primary site of the growth is in the vulva. Tumors present on the vulva as secondary growths from either a genital or an extragenital site should be excluded. This classification does not apply to mucosal malignant melanoma. There should be histologic confirmation of the tumor.

Pathologic Staging. FIGO uses surgical/pathologic staging for vulvar cancer. Stage should be assigned at the time of definitive surgical treatment or prior to radiation or chemotherapy if either of these is the initial mode of therapy. The stage cannot be changed on the basis of disease progression or recurrence or on the basis of response to initial radiation or chemotherapy that precedes primary tumor resection.

DEFINITION OF TNM

The definitions of the T categories correspond to the stages accepted by the Fédération Internationale de Gynécologie et d’Obstétrique (FIGO). Both systems are included for comparison.

<table>
<thead>
<tr>
<th>Primary Tumor (T)</th>
<th>FIGO Categories</th>
<th>Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Tis</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>T1</td>
<td></td>
<td>IA</td>
</tr>
<tr>
<td>T1a</td>
<td></td>
<td>IB</td>
</tr>
</tbody>
</table>

Primary tumor cannot be assessed
No evidence of primary tumor
Carcinoma in situ (preinvasive carcinoma)
Tumor confined to the vulva or vulva and perineum, 2 cm or less in greatest dimension
Tumor confined to the vulva or vulva and perineum, 2 cm or less in greatest dimension, and with stromal invasion no greater than 1 mm
Tumor confined to the vulva or vulva and perineum, 2 cm or less in greatest dimension, and with stromal invasion greater than 1 mm

(Mucosal malignant melanoma is not included.)
T2 II Tumor confined to the vulva or perineum, more than 2 cm in greatest dimension
T3 III Tumor of any size with contiguous spread to the lower urethra and/or vagina or anus
T4 IVA Tumor invades any of the following: upper urethra, bladder mucosa, rectal mucosa, or is fixed to the pubic bone

*Note: The depth of invasion is defined as the measurement of the tumor from the epithelial-stromal junction of the adjacent most superficial dermal papilla to the deepest point of invasion.

Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1 III Unilateral regional lymph node metastasis
N2 IVA Bilateral regional lymph node metastasis

Every effort should be made to determine the site and laterality of lymph node metastases. However, if "regional lymph node metastases, NOS" is the final diagnosis, then the patient should be staged as N1.

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 IVB Distant metastasis (including pelvic lymph node metastasis)

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tis</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>T2</td>
<td>N1</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>N0</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>N1</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Stage IV A</td>
<td>T1</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>T2</td>
<td>N2</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>N2</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>Any N</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Stage IV B</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

Squamous cell carcinoma is the most frequent form of cancer of the vulva. This classification does not apply to malignant melanoma.
The common histopathologic types are:

Vulvar intraepithelial neoplasia, grade III
Squamous cell carcinoma in situ
Squamous cell carcinoma
Verrucous carcinoma
Paget’s disease of vulva
Adenocarcinoma, NOS
Basal cell carcinoma, NOS
Bartholin’s gland carcinoma

OUTCOMES RESULTS

Overall survival data from the FIGO Annual Report for patients treated mostly with radical surgery are shown in Fig. 26.1.

BIBLIOGRAPHY

HISTOLOGIES—VULVA

8010/3 Bartholin’s gland carcinoma
8051/3 Verrucous carcinoma, NOS
8070/2 Squamous cell carcinoma in situ, NOS
8070/3 Squamous cell carcinoma, NOS
8077/2 Squamous intraepithelial neoplasia, grade III
8090/3 Basal cell carcinoma, NOS
8140/3 Adenocarcinoma, NOS
8542/3 Paget’s disease of vulva
8560/3 Adenosquamous carcinoma

PROGNOSTIC FACTORS

Vulvar cancer is a surgically staged malignancy. Surgical-pathologic staging provides specific information about primary tumor size and lymph node status, which are the most important prognostic factors in vulvar cancer. Other commonly evaluated items, such as histologic type, differentiation, DNA ploidy, and S-phase fraction analysis, as well as age, are not uniformly identified as important prognostic factors in vulvar cancer.
DEFINITIONS

Primary Tumor (T)

<table>
<thead>
<tr>
<th>Clinical Categories</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
<th>TNM</th>
<th>FIGO</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>Primary tumor cannot be assessed</td>
<td>TX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>No evidence of primary tumor</td>
<td>T0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Carcinoma in situ (preinvasive carcinoma)</td>
<td>Tis</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tumor confined to the vulva or vulva and perineum, 2 cm or less in greatest dimension</td>
<td>T1</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tumor confined to the vulva or vulva and perineum, 2 cm or less in greatest dimension, and with stromal invasion no greater than 1 mm</td>
<td>T1a</td>
<td>IA</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tumor confined to the vulva or vulva and perineum, 2 cm or less in greatest dimension, and with stromal invasion greater than 1 mm</td>
<td>T1b</td>
<td>IB</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tumor confined to the vulva or vulva and perineum, more than 2 cm in greatest dimension</td>
<td>T2</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tumor of any size with contiguous spread to the lower urethra and/or vagina or anus</td>
<td>T3</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tumor invades any of the following: upper urethra, bladder mucosa, rectal mucosa, or is fixed to the pubic bone</td>
<td>T4</td>
<td>IVA</td>
<td></td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Clinical Categories</th>
<th>Pathologic</th>
<th>Regional Lymph Nodes (N)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>N1</td>
<td>Unilateral regional lymph node metastasis</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>N2</td>
<td>Bilateral regional lymph node metastasis</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>Clinical Categories</th>
<th>Pathologic</th>
<th>Distant Metastasis (M)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>MX</td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>M1</td>
<td>Distant metastasis (including pelvic lymph node metastasis)</td>
</tr>
</tbody>
</table>

Stage Grouping (AJCC/UICC/FIGO)

<table>
<thead>
<tr>
<th>Clinical Categories</th>
<th>Pathologic</th>
<th>Stage Grouping (AJCC/UICC/FIGO)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>0</td>
<td>Tis</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T1</td>
<td>N0</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>IA</td>
<td>T1a</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>IB</td>
<td>T1b</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>II</td>
<td>T2</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>III</td>
<td>T1</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T2</td>
<td>N1</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3</td>
<td>N0</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3</td>
<td>N1</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>IVA</td>
<td>T1</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T2</td>
<td>N2</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3</td>
<td>N2</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T4</td>
<td>Any N</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>IVB</td>
<td>Any T</td>
</tr>
</tbody>
</table>

Source of pathologic metastatic specimen
Histologic Grade (G)
- GX: Grade cannot be assessed
- G1: Well differentiated
- G2: Moderately differentiated
- G3: Poorly differentiated
- G4: Undifferentiated

Residual Tumor (R)
- RX: Presence of residual tumor cannot be assessed
- R0: No residual tumor
- R1: Microscopic residual tumor
- R2: Macroscopic residual tumor

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)
ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.
ANATOMY

Primary Site. The vagina extends from the vulva upward to the uterine cervix. It is lined by squamous epithelium with only rare glandular structures. The vagina is drained by lymphatics toward the pelvic nodes in its upper two-thirds and toward the inguinal nodes in its lower third.

Regional Lymph Nodes. The upper two-thirds of the vagina is drained by lymphatics to the pelvic nodes, including
- Obturator
- Internal iliac (hypogastric)
- External iliac
- Pelvic, NOS

The lower third of the vagina is drained to the groin nodes, including:
- Inguinal
- Femoral

Metastatic Sites. The most common sites of distant spread include the aortic lymph nodes, lungs, and skeleton.

RULES FOR CLASSIFICATION

There should be histologic verification of the disease. The classification applies to primary carcinoma only. Cases should be classified as carcinoma of the vagina when the primary site of the growth is in the vagina. Tumors present in the vagina as secondary growths from either genital or extragenital sites should not be included. A growth that involves the cervix, including the external os, should always be assigned to carcinoma of the cervix. A growth limited to the urethra should be classified as carcinoma of the urethra. Tumor involving the vulva and extending to the vagina should be classified as carcinoma of the vulva.

Clinical Staging. FIGO uses clinical staging for cancer of the vagina. All data available prior to first definitive treatment should be used. The results of biopsy or fine-needle aspiration of inguinal/femoral or other nodes may be included in the clinical staging. The rules of staging are similar to those for carcinoma of the cervix.

Pathologic Staging. In addition to data used for clinical staging, information available from examination of the resected specimen, including pelvic and retroperitoneal lymph nodes, is to be used. The pT, pN, and pM categories correspond to the T, N, and M categories.

DEFINITION OF TNM

The definitions of the T categories correspond to the stages accepted by the Fédération Internationale de Gynécologie et d'Obstétrique (FIGO). Both systems are included for comparison.

<table>
<thead>
<tr>
<th>Primary Tumor (T)</th>
<th>FIGO Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM Categories</td>
<td>T0</td>
</tr>
<tr>
<td></td>
<td>Tis</td>
</tr>
<tr>
<td></td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td>T4</td>
</tr>
</tbody>
</table>

- Primary tumor cannot be assessed
- No evidence of primary tumor
- Carcinoma in situ
- Tumor confined to vagina
- Tumor involves paravaginal tissue but not to pelvic wall
- Tumor extends to pelvic wall
- Tumor invades mucosa of the bladder or rectum and/or extends beyond the true pelvis (bullaous edema is not sufficient evidence to classify a tumor as T4)
Pelvic wall is defined as muscle, fascia, neurovascular structures, or skeletal portions of the bony pelvis.

Regional Lymph Nodes (N)
- NX: Regional lymph nodes cannot be assessed
- N0: No regional lymph node metastasis
- N1: Pelvic or inguinal lymph node metastasis

Distant Metastasis (M)
- MX: Distant metastasis cannot be assessed
- M0: No distant metastasis
- M1: Distant metastasis

STAGE GROUPING
- Stage 0: Tis, N0, M0
- Stage I: T1, N0, M0
- Stage II: T2, N0, M0
- Stage III: T1-T3, N1, M0
- Stage IV: T4, Any N, M0
- Stage IVB: Any T, Any N, M1

HISTOPATHOLOGIC TYPE
Squamous cell carcinoma is the most common type of cancer occurring in the vagina. Approximately 10% of vaginal cancers are adenocarcinoma; melanoma and sarcoma occur rarely.

HISTOLOGIC GRADE (G)
- GX: Grade cannot be assessed
- G1: Well differentiated
- G2: Moderately differentiated
- G3: Poorly differentiated
- G4: Undifferentiated

PROGNOSTIC FACTORS
The most significant prognostic factor is anatomic staging, which reflects the extent of invasion into the surrounding tissue or of metastatic spread.

OUTCOMES RESULTS
Overall survival data from large series are not available because of the rarity of this malignancy. However, FIGO 5-year survival data by clinical stage in patients managed with a variety of modalities are shown in Fig. 27.1.

![Graph showing survival rates by FIGO stage](image-url)

BIBLIOGRAPHY

HISTOLOGIES—VAGINA

8010/2 Carcinoma in situ, NOS
8010/3 Carcinoma, NOS

8052/2 Papillary squamous cell carcinoma, non-invasive
8052/3 Papillary squamous cell carcinoma
8070/2 Squamous cell carcinoma in situ, NOS
8070/3 Squamous cell carcinoma, NOS
8071/3 Squamous cell carcinoma, keratinizing, NOS
8072/3 Squamous cell carcinoma, large cell, non-keratinizing, NOS
8076/2 Squamous cell carcinoma in situ with questionable stromal invasion
8076/3 Squamous cell carcinoma, microinvasive
8077/2 Squamous intraepithelial neoplasia, grade III
8082/3 Lymphoepithelial carcinoma
8084/3 Squamous cell carcinoma, clear cell type
8140/2 Adenocarcinoma in situ, NOS
8140/3 Adenocarcinoma, NOS
8570/3 Adenocarcinoma with squamous metaplasia
8572/3 Adenocarcinoma with spindle cell metaplasia
8800/3 Sarcoma, NOS
8801/3 Spindle cell sarcoma
DEFINITIONS

Primary Tumor (T)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>TNM</th>
<th>FIGO</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TX</td>
<td></td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0</td>
<td></td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tis</td>
<td>0</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1</td>
<td>I</td>
<td>Tumor confined to vagina</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2</td>
<td>II</td>
<td>Tumor invades paravaginal tissues but not to pelvic wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3</td>
<td>III</td>
<td>Tumor extends to pelvic wall[1]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4</td>
<td>IVA</td>
<td>Tumor invades mucosa of the bladder or rectum and/or extends beyond the true pelvis (bullous edema is not sufficient evidence to classify a tumor as T4)</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>NX</th>
<th></th>
<th>Regional lymph nodes cannot be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N0</td>
<td></td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1</td>
<td></td>
<td>Pelvic or inguinal lymph node metastasis</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>MX</th>
<th></th>
<th>Distant metastasis cannot be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M0</td>
<td></td>
<td>No distant metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1</td>
<td></td>
<td>Biopsy of metastatic site performed...</td>
</tr>
</tbody>
</table>

Stage Grouping (AJCC/UICC/FIGO)

| Clinical | Pathologic | 0 | | 1 | | 1I | | 1II | | 1III | T1-3 | | 1IV | | 1IVB | Any | Any |
|----------|------------|-----|------|-----|------|-----|------|-----|------|------|------|-----|------|------|------|------|
| | | Tis | N0 | M0 | | T1 | N0 | M0 | | T2 | N0 | M0 | | T3 | N0 | M0 |
| | | | T4 | Any N | M0 | | | Any T | Any N | M0 |

Histologic Grade (G)

- GX: Grade cannot be assessed
- G1: Well differentiated
- G2: Moderately differentiated
- G3: Poorly differentiated
- G4: Undifferentiated

Residual Tumor (R)

- RX: Presence of residual tumor cannot be assessed
- R0: No residual tumor
- R1: Microscopic residual tumor
- R2: Macroscopic residual tumor

1. Pelvic wall is defined as the muscular, fascial associated neurovascular structures, or skeletal portions of the bony pelvis.

(continued on reverse side)
Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

☐ m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

☐ y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.

☐ r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.

☐ a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)
Cervix Uteri

C53.0 Endocervix
C53.1 Exocervix
C53.8 Overlapping lesion of cervix uteri
C53.9 Cervix uteri

SUMMARY OF CHANGES

* The definition of TNM and the Stage Grouping for this chapter have not changed from the Fifth Edition.

ANATOMY

Primary Site. The cervix is the lower third of the uterus. It is roughly cylindrical in shape and projects into the upper vagina. The endocervical canal is lined by glandular or columnar epithelium. Through the cervix runs the endocervical canal, which is the passageway connecting the vagina with the uterine cavity. The vaginal portion of the cervix, known as the exocervix, is covered by squamous epithelium. The squamocolumnar junction is usually located at the external cervical os, where the endocervical canal begins. Cancer of the cervix may originate from the squamous epithelium of the exocervix or the glandular epithelium of the canal.

Regional Lymph Nodes. The cervix is drained by parametrial, cardinal and uterosacral ligament routes into the following regional lymph nodes:

- Parametrial
- Paracervical
- Obturator
- Internal iliac (hypogastric)
- External iliac
- Common iliac
- Sacral
- Presacral

Metastatic Sites. The most common sites of distant spread include the aortic and mediastinal nodes, lungs, and skeleton. Para-aortic node involvement is considered distant metastasis and is coded M1.

RULES FOR CLASSIFICATION

The classification applies only to carcinoma. There should be histologic confirmation of the disease.

Clinical Staging. Because many patients with cervical cancer are treated by radiation and never undergo surgical-pathologic staging, clinical staging of all patients provides uniformity and is therefore preferred. FIGO staging of cervical cancer is clinical.

The clinical stage should be determined prior to the start of definitive therapy. The clinical stage must not be changed because of subsequent findings once treatment has started. When there is doubt about to which stage a particular cancer should be allocated, the lesser stage should be utilized. Careful clinical examination should be performed in all cases, preferably by an experienced examiner and with the patient under anesthesia. The following examinations are recommended for staging purposes: palpation, inspection, colposcopy, endocervical curettage, hysteroscopy, cystoscopy, proctoscopy, intravenous urography, and X-ray examination of the lungs and skeleton. Suspected involvement of the bladder mucosa or rectal mucosa must be confirmed by biopsy and histology. Fine-needle aspiration cytology of palpable nodes or masses may be used, but laparoscopic or radiologically guided biopsy or aspiration is not to be used for clinical staging. The results of additional examinations such as computerized tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), lymphangiography, arteriography, and venography may not be used to determine clinical staging because these techniques are not universally available. They may, however, be used to develop a treatment plan.

Pathologic Staging. In cases treated by surgical procedures, the pathologist’s findings in the removed tissues can be the basis for extremely accurate statements on the extent of disease. These findings should not be allowed to change the clinical staging but should be recorded in the manner described for the pathologic staging of disease. The pTNM nomenclature is appropriate for this purpose and corresponds to the T, N, and M categories. Infrequently,
hysterectomy is carried out in the presence of unsuspected invasive cervical carcinoma. Such cases cannot be clinically staged or included in therapeutic statistics; they should be reported separately.

DEFINITION OF TNM

The definitions of the T categories correspond to the stages accepted by the Fédération Internationale de Gynécologie et d'Obstétrique (FIGO). Both systems are included for comparison.

Primary Tumor (T)

<table>
<thead>
<tr>
<th>TNM Categories</th>
<th>FIGO Stages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0</td>
<td>0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis</td>
<td>0</td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td>T1</td>
<td>I</td>
<td>Cervical carcinoma confined to uterus (extension to corpus should be disregarded)</td>
</tr>
<tr>
<td>*T1a</td>
<td>IA</td>
<td>Invasive carcinoma diagnosed only by microscopy. Stromal invasion with a maximum depth of 3.0 mm measured from the base of the epithelium and a horizontal spread of 7.0 mm or less. Vascular space involvement, venous or lymphatic, does not affect classification</td>
</tr>
<tr>
<td>T1a1</td>
<td>IA1</td>
<td>Measured stromal invasion 3.0 mm or less in depth and 7.0 mm or less in horizontal spread</td>
</tr>
<tr>
<td>T1a2</td>
<td>IA2</td>
<td>Measured stromal invasion more than 3.0 mm and not more than 5.0 mm with a horizontal spread 7.0 mm or less</td>
</tr>
<tr>
<td>T1b</td>
<td>IB</td>
<td>Clinically visible lesion confined to the cervix or microscopic lesion greater than T1a/IA2</td>
</tr>
<tr>
<td>T1b1</td>
<td>IB1</td>
<td>Clinically visible lesion 4.0 cm or less in greatest dimension</td>
</tr>
<tr>
<td>T1b2</td>
<td>IB2</td>
<td>Clinically visible lesion more than 4.0 cm in greatest dimension</td>
</tr>
<tr>
<td>T2</td>
<td>II</td>
<td>Cervical carcinoma invades beyond uterus but not to pelvic wall or to lower third of vagina</td>
</tr>
<tr>
<td>T2a</td>
<td>IIA</td>
<td>Tumor without parametrial invasion</td>
</tr>
<tr>
<td>T2b</td>
<td>IIB</td>
<td>Tumor with parametrial invasion</td>
</tr>
<tr>
<td>T3</td>
<td>III</td>
<td>Tumor extends to pelvic wall and/or involves lower third of vagina, and/or causes hydronephrosis or non-functioning kidney</td>
</tr>
<tr>
<td>T3a</td>
<td>IIIA</td>
<td>Tumor involves lower third of vagina, no extension to pelvic wall</td>
</tr>
<tr>
<td>T3b</td>
<td>IIB</td>
<td>Tumor extends to pelvic wall and/or causes hydronephrosis or non-functioning kidney</td>
</tr>
<tr>
<td>T4</td>
<td>IVA</td>
<td>Tumor invades mucosa of bladder or rectum, and/or extends beyond true pelvis (bullous edema is not sufficient to classify a tumor as T4)</td>
</tr>
</tbody>
</table>

All macroscopically visible lesions—even with superficial invasion—are T1b/IB.

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>N</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>M</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
</tbody>
</table>

STAGE GROUPING

- **Stage 0**: Tis N0 M0
- **Stage I**: T1 N0 M0
- **Stage IA**: T1a N0 M0
- **Stage IIA**: T1a2 N0 M0
- **Stage IB**: T1b N0 M0
- **Stage IB1**: T1b1 N0 M0
- **Stage IB2**: T1b2 N0 M0
- **Stage II**: T2 N0 M0
- **Stage IIA**: T2a N0 M0
- **Stage IIB**: T2b N0 M0
- **Stage III**: T3 N0 M0
- **Stage IIIA**: T3a N0 M0
- **Stage IIIB**: T1 N1 M0
- **Stage IIIC**: T2 N1 M0
- **Stage IIIA**: T3a N1 M0
- **Stage IIIB**: T3b Any N M0
- **Stage IV**: Any T Any N M0
- **Stage IVB**: Any T Any N M1

HISTOPATHOLOGIC TYPE

Cases should be classified as carcinoma of the cervix if the primary growth is in the cervix. All carcinomas should be included. Grading is encouraged but is not a basis for modifying the stage groupings. When surgery is the primary treatment, the histologic findings permit the case to have pathologic staging, and the pTNM nomenclature is to be used. The histopathologic types are
Cervical intraepithelial neoplasia, grade III
Squamous cell carcinoma in situ
Squamous cell carcinoma
 Invasive
 Keratinizing
 Non-keratinizing
 Verrucous
Adenocarcinoma in situ
Adenocarcinoma, invasive
Endometrioid adenocarcinoma
Clear cell adenocarcinoma
Adenosquamous carcinoma
Adenoid cystic carcinoma
Adenoid basal cell carcinoma
Small cell carcinoma
Neuroendocrine
Undifferentiated carcinoma

HISTOLOGIC GRADE (G)

G0 Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3 Poorly differentiated
G4 Undifferentiated

PROGNOSTIC FACTORS

Current data suggest that more than 90% of squamous cervical cancer contains human papilloma virus (HPV) DNA, most frequently types 16 and 18. In addition to extent or stage of disease, prognostic factors include histology and tumor differentiation. Small cell, neuroendocrine, and clear cell lesions have a worse prognosis, as do poorly differentiated cancers. Women with cervical cancer who are infected with human immunodeficiency virus (HIV) are defined as having autoimmune deficiency syndrome (AIDS), and they have a very poor prognosis, often with rapidly progressive cancer.

OUTCOMES RESULTS

The overall survival by stage of more than 11,000 patients treated from 1993 to 1995 is shown in Figure 28.1.

![Proportion surviving over years after diagnosis](image)

BIBLIOGRAPHY

HISTOLOGIES—CEVIX UTERI

8020/3 Carcinoma, undifferentiated, NOS
8041/3 Small cell carcinoma, NOS
8051/3 Verrucous carcinoma, NOS
8070/2 Squamous cell carcinoma in situ, NOS
8070/3 Squamous cell carcinoma, NOS
8071/3 Squamous cell carcinoma, keratinizing, NOS
8072/3 Squamous cell carcinoma, large cell, non-keratinizing, NOS
8073/3 Squamous cell carcinoma, small cell, non-keratinizing
8077/2 Squamous intraepithelial neoplasia, grade III
8098/3 Adenoid basal carcinoma
8140/2 Adenocarcinoma in situ, NOS
8140/3 Adenocarcinoma, NOS
8200/3 Adenoid cystic carcinoma
8246/3 Neuroendocrine carcinoma, NOS
8310/3 Clear cell adenocarcinoma, NOS
8380/3 Endometrioid adenocarcinoma, NOS
8560/3 Adenosquamous carcinoma
CERVIX UTERI

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen
Tumor Size
Histopathologic Type

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TNM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1a1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1a2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1b1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1b2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

| | N0 | No regional lymph node metastasis |
| | N1 | Regional lymph node metastasis |

Distant Metastasis (M)

	MX	Distant metastasis cannot be assessed
	M0	No distant metastasis
	M1	Distant metastasis

Biopsy of metastatic site performed... Y N
Source of pathologic metastatic specimen
(continued on reverse side)
CERVIX UTERI

Stage Grouping (AJCC/UICC/FIGO)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

- **Stage Grouping (AJCC/UICC/FIGO)**
 - 0: Tis N0 M0
 - I: T1 N0 M0
 - IA: T1a N0 M0
 - IA1: T1a1 N0 M0
 - IA2: T1a2 N0 M0
 - IB: T1b N0 M0
 - IB1: T1b1 N0 M0
 - IB2: T1b2 N0 M0
 - IIA: T2 N0 M0
 - IIA1: T2a N0 M0
 - IIB: T2b N0 M0
 - III: T3 N0 M0
 - IIIA: T3a N0 M0
 - IIIB: T1 N1 M0
 - T2 N1 M0
 - T3a N1 M0
 - T3b Any N M0
 - IVA: T4 Any N M0
 - IVB: Any T Any N M1

Histologic Grade (G)

- ☐ GX: Grade cannot be assessed
- ☐ G1: Well differentiated
- ☐ G2: Moderately differentiated
- ☐ G3: Poorly differentiated
- ☐ G4: Undifferentiated

Residual Tumor (R)

- ☐ RX: Presence of residual tumor cannot be assessed
- ☐ R0: No residual tumor
- ☐ R1: Microscopic residual tumor
- ☐ R2: Macroscopic residual tumor

Additional Descriptors

- **Lymphatic Vessel Invasion (L)**
- LX: Lymphatic vessel invasion cannot be assessed
- L0: No lymphatic vessel invasion
- L1: Lymphatic vessel invasion

- **Venous Invasion (V)**
- VX: Venous invasion cannot be assessed
- V0: No venous invasion
- V1: Microscopic venous invasion
- V2: Macroscopic venous invasion

Prognostic Indicators (if applicable)
Indicate on diagram primary tumor and regional nodes involved.
ANATOMY

Primary Site. The upper two-thirds of the uterus above the level of the internal cervical os is referred to as the uterine corpus. The oviducts (fallopian tubes) and the round ligaments enter the uterus at the upper and outer corners (cornu) of the pear-shaped organ. The portion of the uterus that is above a line connecting the tubo-uterine orifices is referred to as the uterine fundus. The lower third of the uterus is called the cervix and lower uterine segment. Tumor involvement of the endocervical mucosa and/or the stroma of the endocervix is prognostically important and affects staging (T2). The location of the tumor must be carefully evaluated and recorded by the pathologist. The depth of tumor invasion into the myometrium is also of prognostic significance and should be included in the pathology report. Extension of the tumor through the myometrial wall of the uterus into the parametrium occurs on occasion and constitutes regional extension (T3a). Involvement of the ovaries (T3a) by direct extension or metastases or extension to the vagina (T3b) occurs relatively infrequently.

Regional Lymph Nodes. The regional lymph nodes are paired and each of the paired sites should be examined. The regional nodes are:

- Obturator
- Internal iliac (hypogastric)
- External iliac
- Common iliac
- Para-aortic
- Presacral
- Parametrial
- Pelvic lymph nodes, NOS

For adequate evaluation of the regional lymph nodes, sampling of para-aortic and bilateral obturator nodes and at least one other regional node group should be documented in either or both of the operative and surgical pathology reports.

Parametrial nodes are not commonly detected unless a radical hysterectomy is performed for cases with gross cervical stromal invasion.

Metastatic Sites. The vagina and lung are the common metastatic sites. Intra-abdominal metastases occur frequently in advanced disease.

RULES FOR CLASSIFICATION

The classification applies only to carcinoma and malignant mixed mesodermal tumors. There should be histologic verification and grading of the tumor.

Clinical Staging. If the surgeon feels that systematic regional lymph node sampling imposes an unfavorable risk-to-benefit ratio, clinical assessment of the pertinent node groups (obturator, para-aortic groups, internal iliac, common iliac, and external iliac) should be performed and specifically annotated in the operative report and recorded as cN.

A small number of patients may be treated with primary radiation therapy. In such cases, patients should be staged with the clinical staging system adopted by FIGO (Fédération Internationale de Gynécologie et d’Obstétrique) in 1971. The designation of that staging system must be recorded (cT).

Pathologic Staging. FIGO uses surgical/pathologic staging for corpus uteri cancer. Stage should be assigned at the time of definitive surgical treatment or prior to radiation or chemotherapy if those are the initial modes of therapy. The stage should not be changed on the basis of disease progression or recurrence or on the basis of response to initial radiation or chemotherapy that precedes primary tumor resections. Ideally, the depth of myometrial invasion (in millimeters) should be recorded, along with the thickness of the myometrium at that level (recorded as a percentage of myometrial invasion).

The presence of carcinoma in the regional lymph nodes is a clinically critical prognostic variable. Multiple studies have confirmed the inaccuracy of clinical assessment of regional nodal metastasis in many anatomic sites. For this
reason, surgical/pathologic assessment of the regional lymph nodes is strongly advocated for all patients with corpus uteri cancer. This is also the recommendation of FIGO.

Fractional curettage is not adequate to establish cervical involvement or to distinguish between Stages I and II. That distinction can best be made by histologic verification of clinically suspicious cervical involvement or histopathologic examination of the removed uterus.

The pT, pN, and pM categories correspond to the T, N, and M categories and are used to designate cases where adequate pathologic specimens are available for accurate stage groupings. When there are insufficient surgical-pathologic findings, the clinical cT, cN, cM categories should be used on the basis of clinical evaluation.

DEFINITION OF TNM

The definitions of the T categories correspond to the stages accepted by FIGO. FIGO stages are further subdivided by histologic grade of tumor—for example, Stage IC G2. Both systems are included for comparison.

Primary Tumor (T) (Surgical-Pathologic findings)

<table>
<thead>
<tr>
<th>TNM</th>
<th>FIGO</th>
<th>Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
<td></td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
<td></td>
</tr>
<tr>
<td>TiS</td>
<td>Carcinoma in situ</td>
<td></td>
</tr>
<tr>
<td>T1</td>
<td>Tumor confined to corpus uteri</td>
<td></td>
</tr>
<tr>
<td>Ta1</td>
<td>Tumor limited to endometrium</td>
<td></td>
</tr>
<tr>
<td>Ta1b</td>
<td>Tumor invades less than one-half of the myometrium</td>
<td></td>
</tr>
<tr>
<td>T1c</td>
<td>Tumor invades one-half or more of the myometrium</td>
<td></td>
</tr>
<tr>
<td>T2</td>
<td>Tumor invades cervix but does not extend beyond uterus</td>
<td></td>
</tr>
<tr>
<td>T2a</td>
<td>Tumor limited to the glandular epithelium of the endocervix. There is no evidence of connective tissue stromal invasion</td>
<td></td>
</tr>
<tr>
<td>T2b</td>
<td>Invasion of the stromal connective tissue of the cervix</td>
<td></td>
</tr>
<tr>
<td>T3</td>
<td>Local and/or regional spread as defined below</td>
<td></td>
</tr>
<tr>
<td>T3a</td>
<td>Tumor involves serosa and/or adnexa (direct extension or metastasis) and/or cancer cells in ascites or peritoneal washings</td>
<td></td>
</tr>
<tr>
<td>T3b</td>
<td>Vaginal involvement (direct extension or metastasis)</td>
<td></td>
</tr>
<tr>
<td>T4</td>
<td>Tumor invades bladder mucosa and/or bowel mucosa (bulbous edema is not sufficient to classify a tumor as T4)</td>
<td></td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

- NX: Regional lymph nodes cannot be assessed
- N0: No regional lymph node metastasis
- N1: Regional lymph node metastasis to pelvic and/or para-aortic nodes

Distant Metastasis (M)

- MX: Distant metastasis cannot be assessed
- M0: No distant metastasis
- M1: Distant metastasis (includes metastasis to abdominal lymph nodes other than para-aortic, and/or inguinal lymph nodes; excludes metastasis to vagina, pelvic serosa, or adnexa)

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>Ti</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA</td>
<td>Ti</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IC</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIA</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIA</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIIC</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M0</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

- Endometrioid carcinomas
- Villloglandular adenocarcinoma
- Adenocarcinoma with benign squamous elements, squamous metaplasia, or squamous differentiation (adenoacanthoma).
- Adenosquamous carcinoma (mixed adenocarcinoma and squamous cell carcinoma)
- Mucinous adenocarcinoma
- Serous adenocarcinoma (papillary serous)
- Clear cell adenocarcinoma
- Squamous cell carcinoma
- Undifferentiated carcinoma
- Malignant mixed mesodermal tumors

 Sarcomas of the uterus should not be included.

HISTOLOGIC GRADE (G)

- GX: Grade cannot be assessed
- GI: Well differentiated
G2 Moderately differentiated
G3–4 Poorly differentiated or undifferentiated

Histopathology—Degree of Differentiation. Cases of carcinoma of the corpus uteri should be grouped according to the degree of differentiation of the adenocarcinoma as follows:

G1 5% or less of a non-squamous or non-morular solid growth pattern
G2 6% to 50% of a non-squamous or non-morular solid growth pattern
G3 More than 50% of a non-squamous or non-morular solid growth pattern

Notes on Pathologic Grading

1. Notable nuclear atypia, inappropriate for the architectural grade, raises the grade to 3.
2. Serous, clear cell, and mixed mesodermal tumors are high risk and considered Grade 3.
3. Adenocarcinomas with benign squamous elements (squamous metaplasia) are graded according to the nuclear grade of the glandular component.

PROGNOSTIC FACTORS

The presence or absence of metastatic disease in the regional lymph nodes is the most important prognostic factor in carcinomas clinically confined to the uterus. The AJCC strongly advocates the use of surgical/pathologic assessment of nodal status whenever possible. Palpation of regional nodes is well recognized to be much less accurate than pathologic evaluation of the nodes.

Historically, the factors of grade of the tumor and depth of myometrial invasion have been recognized as important prognostic factors. In surgically staged patients, using multivariate analysis, these factors are surrogates for the probability of nodal metastasis. Preoperative endometrial biopsy does not accurately correlate with tumor grade and depth of myometrial invasion.

The presence or absence of lymphovascular space involvement of the myometrium is important in most, but not all, series. When present, lymphovascular space involvement increases the probability of metastatic involvement of the regional lymph nodes.

The importance of tumor cells in peritoneal "washings" and the presence of metastatic foci in adnexal structures may have an adverse impact on prognosis, but they remain controversial and require further study.

Serous papillary and clear cell adenocarcinomas have a higher incidence of extraterine disease at detection than endometrioid adenocarcinomas. The risk of extraterine disease does not correlate with the depth of myometrial invasion, because widespread abdominal metastases can be found even when there is no myometrial invasion. For this reason, they are classified as Grade 3 tumors.

In malignancies with squamous elements, the aggressiveness of the tumor seems to be related to the degree of differentiation of the glandular component rather than the squamous element. Clinicopathologic and immunohistochemical studies support classifying malignant mixed mesodermal tumors as high-grade (G3) malignancies of epithe-
lial origin rather than as sarcomas with mixed epithelial and mesenchymal differentiation, as in earlier classification systems.

The data regarding the impact of DNA ploidy, estrogen and progesterone receptor status, and tumor suppressor gene and oncogene expression are not sufficiently mature to incorporate into the stage grouping at this time.

OUTCOMES RESULTS

The significance of clinical compared with surgical/pathologic staging is shown in Figure 29.1. The prognosis for patients with clinical Stage I disease is similar to that for women with surgical Stage III, and those with clinical Stage III cancers have the same prognosis as patients with surgical Stage IV lesions. These findings also emphasize the importance of clearly separating patients who are staged clinically from those who have more accurate surgical/pathologic staging recommended by AJCC and FIGO.

BIBLIOGRAPHY

Gershenson DM (Ed.): Guidelines for referral to a gynecologic oncologist: rationale and benefits. Gyn Oncology 78:S1–13, 2000

HISTOLOGIES—CORPUS UTERI

8020/3: Carcinoma, undifferentiated, NOS
8070/3: Squamous cell carcinoma, NOS
8263/3: Villoglandular adenocarcinoma
8310/3: Clear cell adenocarcinoma, NOS
8380/3: Endometrioid adenocarcinoma, NOS
8383/3: Endometrioid adenocarcinoma, ciliated cell variant
8441/3: Serous cystadenocarcinoma, NOS
8460/3: Serous adenocarcinoma (papillary serous)
8480/3: Mucinous adenocarcinoma
8560/3: Adenosquamous carcinoma
8570/3: Adenocarcinoma with squamous metaplasia
8951/3: Malignant mixed mesodermal tumors
Definitions

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
</table>
| FIGO recommends surgical/pathologic staging. Clinical staging is done with 1971 FIGO as follows: | \[
\begin{array}{c}
\square \text{TX} \quad \text{Primary tumor cannot be assessed} \\
\square \text{T0} \quad \text{No evidence of primary tumor} \\
\square \text{T1} \quad \text{Carcinoma in situ} \\
\square \text{T1a} \quad \text{Tumor confined to corpus including the isthmus} \\
\square \text{T1b} \quad \text{Tumor invades less than one-half of the myometrium} \\
\square \text{T1c} \quad \text{Tumor invades one-half or more of the myometrium} \\
\square \text{T2} \quad \text{Tumor invades cervix but does not extend beyond uterus} \\
\square \text{T2a} \quad \text{Tumor limited to the glandular epithelium of the endocervix. There is no evidence of connective tissue stromal invasion} \\
\square \text{T2b} \quad \text{Invasion of the stromal connective tissue of the cervix} \\
\square \text{T3} \quad \text{Local and/or regional spread as defined below} \\
\square \text{T3a} \quad \text{Tumor involves serosa and/or adnexa (direct extension or metastasis) and/or cancer cells in ascites or peritoneal washings} \\
\square \text{T3b} \quad \text{Vaginal involvement (direct extension or metastasis) } \\
\square \text{T4} \quad \text{Tumor invades bladder mucosa and/or bowel mucosa (bulbous edema is not sufficient evidence to classify a tumor as T4) } \\
\end{array}
\]

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\square</td>
<td>\square</td>
<td>NX \quad Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>\square</td>
<td>\square</td>
<td>N0 \quad No regional lymph node metastasis</td>
</tr>
<tr>
<td>\square</td>
<td>\square</td>
<td>N1 \quad Regional lymph node metastases to pelvic and/or para-aortic lymph nodes</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\square</td>
<td>\square</td>
<td>MX \quad Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>\square</td>
<td>\square</td>
<td>M0 \quad No distant metastasis</td>
</tr>
<tr>
<td>\square</td>
<td>\square</td>
<td>M1 \quad Distant metastasis includes metastasis to intra-abdominal lymph nodes other than para-aortic, and/or inguinal lymph nodes; excludes metastasis to vagina, pelvic serosa, or adnexa</td>
</tr>
</tbody>
</table>

Biopsy of metastatic site performed

\[\square \text{Y} \quad \square \text{N}\]

Source of pathologic metastatic specimen

(continued on reverse side)
CORPUS UTERI

Stage Grouping (AJCC/UICC/FIGO)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
</tr>
<tr>
<td>1</td>
<td>T1</td>
</tr>
<tr>
<td>IA</td>
<td>T1a</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
</tr>
<tr>
<td>IC</td>
<td>T1c</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
</tr>
<tr>
<td>IIA</td>
<td>T2a</td>
</tr>
<tr>
<td>IIIB</td>
<td>T2b</td>
</tr>
<tr>
<td>IIIC</td>
<td>T3</td>
</tr>
<tr>
<td>IIIA</td>
<td>T3a</td>
</tr>
<tr>
<td>IIIB</td>
<td>T3b</td>
</tr>
<tr>
<td>IVA</td>
<td>T4</td>
</tr>
<tr>
<td>IVB</td>
<td>Any T</td>
</tr>
</tbody>
</table>

Histologic Grade (G)

- □ GX Grade cannot be assessed
- □ G1 Well differentiated
- □ G2 Moderately differentiated
- □ G3-G4 Poorly differentiated or undifferentiated

Histopathology—Degree of Differentiation

Cases of carcinoma of the corpus should be grouped with regard to the degree of differentiation of the adenocarcinoma as follows:

- □ G1 5% or less of a non-squamous or non-morular solid growth pattern
- □ G2 6% to 50% of a non-squamous or non-morular solid growth pattern
- □ G3 more than 50% of a non-squamous or non-morular solid growth pattern

Residual Tumor (R)

- □ RX Presence of residual tumor cannot be assessed
- □ R0 No residual tumor
- □ R1 Microscopic residual tumor
- □ R2 Macroscopic residual tumor

Additional Descriptors

For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- □ m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- □ y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- □ r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- □ a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)
ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.

Physician's Signature ___________________________ Date ___________________________
Ovary

ANATOMY

Primary Site. The ovaries are a pair of solid, flattened ovoids 2 to 4 cm in diameter that are connected by a peritoneal fold to the broad ligament and by the infundibulopelvic ligament to the lateral wall of the pelvis. They are attached medially to the uterus by the utero-ovarian ligament.

In some cases, an adenocarcinoma is primary in the peritoneum. The ovaries are not involved or are only involved with minimal surface implants. The clinical presentation, surgical therapy, chemotherapy, and prognosis of these peritoneal tumors mirror those of papillary serous carcinoma of the ovary. Patients who undergo prophylactic oophorectomy for a familial history of ovarian cancer appear to retain a 1 to 2% chance of developing peritoneal adenocarcinoma, which is histopathologically and clinically similar to primary ovarian cancer.

Regional Lymph Nodes. The lymphatic drainage occurs by the utero-ovarian and round ligament trunks and an external iliac accessory route into the following regional nodes:

- External iliac
- Internal iliac (hypogastric)
- Obturator
- Sacral
- Common iliac
- Para-aortic
- Iinguinal
- Pelvic, NOS
- Retroperitoneal, NOS

For pN0, histologic examination should include both pelvic and para-aortic lymph nodes.

Metastatic Sites. The peritoneum, including the omentum and the pelvic and abdominal visceral and parietal peritoneum, comprises common sites for seeding. Diaphragmatic and liver surface involvement are also common. However, to be consistent with FIGO staging, these implants within the abdominal cavity (T3) are not considered distant metastases. Primary peritoneal adenocarcinoma is always metastatic at diagnosis (M1). Extraperitoneal sites, including parenchymal liver, lung, skeletal metastases, and supraclavicular and axillary nodes, are M1.

RULES FOR CLASSIFICATION

Ovarian cancer is surgically/pathologically staged. There should be histologic confirmation of the ovarian disease. Laparotomy and resection of the ovarian mass, as well as hysterectomy, form the basis for staging. Biopsies of all frequently involved sites, such as omentum, mesentery, diaphragm, peritoneal surfaces, pelvic nodes, and para-aortic nodes, are required for ideal staging of early disease. For example, in order to stage a patient confidently as Stage IA (T1 N0 M0), negative biopsies of all of the above sites should be obtained to exclude microscopic metastases. On the other hand, a single biopsy showing metastatic adenocarcinoma in the omentum is adequate to classify a patient as Stage IIIC, thus making other biopsies unnecessary from a staging standpoint. The final histologic and cytologic findings after surgery are to be considered in the staging. Operative findings prior to tumor debulking determine stage, which may be modified by histopathologic as well as clinical or radiologic evaluation (palpable supraclavicular node or pulmonary metastases on chest X-ray, for example).

Clinical Staging. Although clinical studies similar to those for other sites may be used, surgical-pathologic evaluation of the abdomen and pelvis is necessary to establish a definitive diagnosis of ovarian cancer and rule out other primary malignancies (such as bowel, uterine, and pancreatic cancers or occasionally lymphoma) that may present with similar preoperative findings. A laparotomy is the most
widely accepted procedure used for surgical-pathologic staging, but occasionally laparoscopy can be used. Occasionally, patients with advanced disease and/or women who are medically unsuitable candidates for surgery may be presumed to have ovarian cancer on the basis of cytology of ascites or pleural effusion showing typical adenocarcinoma, combined with imaging studies demonstrating enlarged ovaries. Such patients are usually considered as unstaged (TX), although positive cytology of a pleural effusion or supraclavicular lymph node occasionally allows designation of M1 or FIGO Stage IV disease.

Imaging studies are often done in conjunction with definitive abdominal-pelvic surgery, and chest X-ray, bone scans, computerized scanning (CT), or positron emission tomography (PET) may identify lung, bone, or brain metastases that should be considered in the final stage. Pleural effusions should be evaluated with cytology.

As with all gynecologic cancers, the final stage should be established at the time of initial treatment. It should not be modified or changed on the basis of subsequent findings. Second-look laparotomies and laparoscopy after initial chemotherapy are being evaluated because of the limitation of routine examinations in detecting early recurrence. Findings related to these procedures do not change the patient’s original stage.

Pathologic Staging. Laparotomy and biopsy of all suspected sites of involvement provide the basis for staging. Histologic and cytologic data are required. This is the preferred method of staging for ovarian cancer. The operative note and/or the pathology report should describe the location and size of metastatic lesions and the primary tumors for optimal staging. In addition, the determination of tumor size outside of the pelvis must be noted and documented in the operative report. This is reported in centimeters and represents the largest implant, whether resected or not at the time of surgical exploration.

DEFINITION OF TNM

The definitions of the T categories correspond to the stages accepted by the Fédération Internationale de Gynécologie et d’Obstétrique (FIGO). Both systems are included for comparison.

Primary Tumor (T)

<table>
<thead>
<tr>
<th>TNM Categories</th>
<th>FIGO</th>
<th>FIGO Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td></td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td></td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>I</td>
<td>Tumor limited to ovaries (one or both)</td>
</tr>
<tr>
<td>T1a</td>
<td>IA</td>
<td>Tumor limited to one ovary; capsule intact, no tumor on ovarian surface. No malignant cells in ascites or peritoneal washings*</td>
</tr>
<tr>
<td>T1b</td>
<td>IB</td>
<td>Tumor limited to both ovaries; capsules intact, no tumor on ovarian surface. No malignant cells in ascites or peritoneal washings*</td>
</tr>
<tr>
<td>T1c</td>
<td>IC</td>
<td>Tumor limited to one or both ovaries with any of the following: capsule ruptured, tumor on ovarian surface, malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2</td>
<td>II</td>
<td>Tumor involves one or both ovaries with pelvic extension and/or implants</td>
</tr>
<tr>
<td>T2a</td>
<td>IIA</td>
<td>Extension and/or implants on uterus and/or tube(s). No malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2b</td>
<td>IIB</td>
<td>Extension and/or implants on other pelvic tissues. No malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2c</td>
<td>IIC</td>
<td>Pelvic extension and/or implants (T2a or T2b) with malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T3</td>
<td>III</td>
<td>Tumor involves one or both ovaries with microscopically confirmed peritoneal metastasis outside the pelvis</td>
</tr>
<tr>
<td>T3a</td>
<td>IIIA</td>
<td>Microscopic peritoneal metastasis beyond pelvis (no macroscopic tumor)</td>
</tr>
<tr>
<td>T3b</td>
<td>IIIB</td>
<td>Macroscopic peritoneal metastasis beyond pelvis 2 cm or less in greatest dimension</td>
</tr>
<tr>
<td>T3c</td>
<td>IIIC</td>
<td>Peritoneal metastasis beyond pelvis more than 2 cm in greatest dimension and/or regional lymph node metastasis</td>
</tr>
</tbody>
</table>

*Note: The presence of non-malignant ascites is not classified. The presence of ascites does not affect staging unless malignant cells are present.

Note: Liver capsule metastasis T3/Stage III; liver parenchymal metastasis M1/Stage IV. Pleural effusion must have positive cytology for M1/Stage IV.

Regional Lymph Nodes (N)

NX	Regional lymph nodes cannot be assessed
N0	No regional lymph node metastasis
N1	Regional lymph node metastasis

Distant Metastasis (M)

MX	Distant metastasis cannot be assessed
M0	No distant metastasis
M1	Distant metastasis (excludes peritoneal metastasis)

pTNM Pathologic Classification. The pT, pN, and pM categories correspond to the T, N, and M categories.
STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T1</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1A</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IC</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage 1T1</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIA</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIB</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIC</td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IIIC</td>
<td>T3c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
<td></td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

The American Joint Committee on Cancer (AJCC) endorses the histologic typing of malignant ovarian tumors as endorsed by the World Health Organization (WHO) and recommends that all ovarian epithelial tumors be subdivided according to a simplified version of this classification. The three main histologic types, which include nearly all ovarian cancers, are epithelial tumors, sex-cord stromal tumors, and germ cell tumors. Non-epithelial primary ovarian cancers may be staged using this classification but should be reported separately.

I. Epithelial tumors
 A. Serous tumors
 1. Benign serous cystadenoma
 2. Of borderline malignancy: Serous cystadenoma with proliferating activity of the epithelial cells and nuclear abnormalities, but with no infiltrative destructive growth (carcinomas of low potential malignancy)
 3. Serous cystadenocarcinoma
 B. Mucinous tumors
 1. Benign mucinous cystadenoma
 2. Of borderline malignancy: Mucinous cystadenoma with proliferating activity of the epithelial cells and nuclear abnormalities, but with no infiltrative destructive growth (carcinomas of low potential malignancy)
 3. Mucinous cystadenocarcinoma
 C. Endometrioid tumors
 1. Benign endometrioid cystadenoma
 2. Endometrioid tumors with proliferating activity of the epithelial cells and nuclear abnormalities, but with no infiltrative destructive growth (carcinomas of low potential malignancy)
 3. Endometrioid adenocarcinoma
 D. Clear cell tumors
 1. Benign clear cell tumors
 2. Clear cell tumors with proliferating activity of the epithelial cells and nuclear abnormalities, but with no infiltrative destructive growth (low potential malignancy)
 E. Brenner (transitional cell tumors)
 1. Benign Brenner
 2. Borderline malignancy
 3. Malignant
 4. Transitional cell
 F. Squamous cell tumor
 G. Undifferentiated carcinoma
 1. A malignant tumor of epithelial structure that is too poorly differentiated to be placed in any other group
 H. Mixed epithelial tumor
 1. Tumors composed of two or more of the five major cell types of common epithelial tumors (types should be specified)

Cases with intraperitoneal carcinoma in which the ovaries appear to be incidentally involved and not the primary origin should be labeled as extraperitoneal peritoneal carcinoma. They are usually staged with the ovarian staging classification. Because the peritoneum is essentially always involved throughout the abdomen, the peritoneal tumors are usually within the Stage III (T3) or Stage IV (M1) categories.

HISTOLOGIC GRADE (G)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX</td>
<td>Grade cannot be assessed</td>
</tr>
<tr>
<td>GB</td>
<td>Borderline malignancy</td>
</tr>
<tr>
<td>G1</td>
<td>Well differentiated</td>
</tr>
<tr>
<td>G2</td>
<td>Moderately differentiated</td>
</tr>
<tr>
<td>G3-4</td>
<td>Poorly differentiated or undifferentiated</td>
</tr>
</tbody>
</table>

PROGNOSTIC FACTORS

Histology and grade are important prognostic factors. Women with borderline tumors (low malignant potential) have an excellent prognosis, even when extraovarian disease is found. In patients with invasive ovarian cancer, well-differentiated lesions have a better prognosis than poorly differentiated tumors, stage for stage. Histologic type is also extremely important, because some stromal tumors (theca cell, granulosa) have an excellent prognosis, whereas epithelial tumors in general have a less favorable outcome. For this reason, epithelial cell types are generally reported together, and sex-cord stromal tumors and germ cell tumors are reported separately. Tumor cell type also helps to guide the type of chemotherapy that is recommended.

In advanced disease, the most important prognostic factor is the residual disease after the initial surgical management. Even with advanced stage, patients with no gross residual after the surgical debulking have a considerably better
prognosis than those with minimal or extensive residual. Not only is the size of the residual important, but the number of sites of residual tumor also appears to be important (tumor volume).

The tumor marker CA-125 is useful for following the response to therapy in patients with epithelial ovarian cancer who have elevated levels of this marker. The rate of regression during chemotherapy treatment may have prognostic significance. Women with germ cell tumors may also have elevated serum tumor markers—alpha fetoprotein (AFP) or human chorionic gonadotropin (β-hCG). Other factors, such as growth factors and oncogene amplification, are currently under investigation.

OUTCOMES RESULTS

Epithelial carcinoma accounts for approximately 80% of all patients with cancer of the ovary. Because of the difficulty of diagnosing this cancer at an early stage, the overall prognosis of women with epithelial ovarian cancer is poor, despite the fact that patients with early stage disease have a favorable outlook. The prognostic significance of stage is shown in Figure 30.1.

BIBLIOGRAPHY

HISTOLOGIES—OVARY

8020/3 Undifferentiated carcinoma
8070/3 Squamous cell tumor
8140/2 Adenocarcinoma in situ, NOS
8140/3 Adenocarcinoma, NOS
8310/3 Clear cell adenocarcinoma, NOS
8323/3 Mixed epithelial tumor
8380/0 Benign endometrioid cystadenoma
8380/1 Endometrioid cystadenoma of low malignant potential
8380/3 Endometrioid adenocarcinoma, NOS
8381/1 Endometrioid adenofibroma of borderline malignancy
8381/3 Endometrioid adenofibroma, malignant
8382/3 Endometrioid adenocarcinoma, secretory variant
8383/3 Endometrioid adenocarcinoma, ciliated cell variant
8440/3 Cystadenocarcinoma, NOS
8441/0 Benign serous adenoma
8441/3 Serous cystadenocarcinoma, NOS
8442/1 Serous cystadenoma of low malignant potential
8444/1 Clear cell cystadenoma of low malignant potential
8450/3 Clear cell cystadenocarcinoma
8460/3 Papillary serous cystadenocarcinoma
8461/3 Serous surface papillary carcinoma
8470/0 Benign mucinous cystadenoma
8470/2 Mucinous cystadenocarcinoma, non-invasive
8470/3 Mucinous cystadenocarcinoma, NOS
8472/1 Mucinous cystadenoma of low malignant potential
8480/3 Mucinous adenocarcinoma
HISTOLOGIES—OVARY (CONT.)

8450/6 Pseudomyxoma peritonei
8481/3 Mucin-producing adenocarcinoma
8482/3 Mucinous adenocarcinoma, endocervical type
8490/3 Signet ring cell carcinoma
8560/3 Adenosquamous carcinoma
8562/3 Epithelial-myoepithelial carcinoma
8570/3 Adenocarcinoma with squamous metaplasia
8600/3 Thecoma, malignant
8620/3 Granulosa cell tumor, malignant
8630/3 Androblastoma, malignant
8631/3 Sertoli-Leydig cell tumor, poorly differentiated
8634/3 Sertoli-Leydig cell tumor, poorly differentiated, with heterologous elements
8640/3 Sertoli cell carcinoma
8650/3 Leydig cell tumor, malignant
8670/3 Steroid cell tumor, malignant
8930/3 Endometrial stromal sarcoma, NOS
8931/3 Endometrial stromal sarcoma, low grade
8933/3 Adenosarcoma
8935/3 Stromal sarcoma, NOS
8950/3 Mullerian mixed tumor
8951/3 Mesodermal mixed tumor
9000/0 Benign Brenner tumor
9000/1 Brenner tumor of borderline malignancy
9000/3 Brenner tumor, malignant
9014/3 Serous adenocarcinohibroma
9015/3 Mucinous adenocarcinohibroma
9050/3 Mesothelioma, malignant
9051/3 Fibrous mesothelioma, malignant
9052/3 Epithelioid mesothelioma, malignant
9053/3 Mesothelioma, biphasic, malignant
9060/3 Dysgerminoma
9064/3 Germinoma
9065/3 Germ cell tumor, nonseminomatous
9070/3 Embryonal carcinoma, NOS
9071/3 Yolk sac tumor
9072/3 Polyembryoma
9080/3 Teratoma, malignant, NOS
9081/3 Teratocarcinoma
9082/3 Malignant teratoma, undifferentiated
9083/3 Malignant teratoma, intermediate
9084/3 Teratoma with malignant transformation
9085/3 Mixed germ cell tumor
9090/3 Struma ovarii, malignant
9100/3 Choriocarcinoma, NOS
9101/3 Choriocarcinoma combined with other germ cell elements
9102/3 Malignant teratoma, trophoblastic
9105/3 Trophoblastic tumor, epithelioid
9110/3 Mesonephroma, malignant
OVARY

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen

Tumor Size

Histopathologic Type

Laterality:
- □ Bilateral
- □ Left
- □ Right

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TNM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FIGO Categories</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stages</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td></td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td></td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>I</td>
<td>Tumor limited to ovaries (one or both)</td>
</tr>
<tr>
<td>T1a</td>
<td>IA</td>
<td>Tumor limited to one ovary; capsule intact, no tumor on ovarian surface. No malignant cells in ascites or peritoneal washings<sup>(1)</sup></td>
</tr>
<tr>
<td>T1b</td>
<td>IB</td>
<td>Tumor limited to both ovaries; capsule intact, no tumor on ovarian surface. No malignant cells in ascites or peritoneal washings<sup>(1)</sup></td>
</tr>
<tr>
<td>T1c</td>
<td>IC</td>
<td>Tumor limited to one or both ovaries with any of the following: capsule ruptured, tumor on ovarian surface, malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2</td>
<td>II</td>
<td>Tumor involves one or both ovaries with pelvic extension</td>
</tr>
<tr>
<td>T2a</td>
<td>IIA</td>
<td>Extension and/or implants on uterus and/or tube(s). No malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2b</td>
<td>IIB</td>
<td>Extension to and/or implants on other pelvic tissues. No malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2c</td>
<td>IIC</td>
<td>Pelvic extension and/or implants (T2a or T2b) with malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T3</td>
<td>III</td>
<td>Tumor involves one or both ovaries with microscopically confirmed peritoneal metastasis outside the pelvis<sup>(2)</sup></td>
</tr>
<tr>
<td>T3a</td>
<td>IIIA</td>
<td>Microscopic peritoneal metastasis beyond pelvis (no macroscopic tumor)<sup>(2)</sup></td>
</tr>
<tr>
<td>T3b</td>
<td>IIIB</td>
<td>Macroscopic peritoneal metastasis beyond pelvis 2 cm or less in greatest dimension<sup>(2)</sup></td>
</tr>
<tr>
<td>T3c</td>
<td>IIIC</td>
<td>Peritoneal metastasis beyond pelvis more than 2 cm in greatest dimension and/or regional lymph node metastasis<sup>(2)</sup></td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td></td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td></td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
<td>IIIC</td>
<td>Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td></td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td></td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>IV</td>
<td>Distant metastasis (excludes peritoneal metastasis)<sup>(2)</sup></td>
</tr>
</tbody>
</table>

Biopsy of metastatic site performed... □ Y □ N
Source of pathologic metastatic specimen

(continued on reverse side)
Stage Grouping (AJCC/UICC/FIGO)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>T1</td>
</tr>
<tr>
<td>IA</td>
<td>T1a</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
</tr>
<tr>
<td>IC</td>
<td>T1c</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
</tr>
<tr>
<td>II A</td>
<td>T2a</td>
</tr>
<tr>
<td>II B</td>
<td>T2b</td>
</tr>
<tr>
<td>II C</td>
<td>T2c</td>
</tr>
<tr>
<td>III</td>
<td>T3</td>
</tr>
<tr>
<td>II A A</td>
<td>T3a</td>
</tr>
<tr>
<td>II B B</td>
<td>T3b</td>
</tr>
<tr>
<td>II C C</td>
<td>T3c</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
</tr>
</tbody>
</table>

Histologic Grade (G)

- GX: Grade cannot be assessed
- G8: Borderline malignancy
- G1: Well differentiated
- G2: Moderately differentiated
- G3-G4: Poorly differentiated or undifferentiated

Residual Tumor (R)

- RX: Presence of residual tumor cannot be assessed
- R0: No residual tumor
- R1: Microscopic residual tumor
- R2: Macroscopic residual tumor

Additional Descriptors

- **Lymphatic Vessel Invasion (L)**
 - LX: Lymphatic vessel invasion cannot be assessed
 - L0: No lymphatic vessel invasion
 - L1: Lymphatic vessel invasion

- **Venous Invasion (V)**
 - VX: Venous invasion cannot be assessed
 - V0: No venous invasion
 - V1: Microscopic venous invasion
 - V2: Macroscopic venous invasion

Prognostic Indicators (if applicable)
ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.
Fallopian Tube

C57.0 Fallopian tube

SUMMARY OF CHANGES

- The definition of TNM and the Stage Grouping for this chapter have not changed from the Fifth Edition.

ANATOMY

Primary Site. The fallopian tube extends from the posterior superior aspect of the uterine fundus laterally and anteriorly to the ovary. Its length is approximately 10 cm. The medial end arises in the cornual portion of the uterine cavity, and the lateral end opens to the peritoneal cavity.

Carcinoma of the fallopian tube is almost always an adenocarcinoma arising from an in situ lesion of the tubal mucosa. It invades locally into the muscular wall of the tube and then into the peritubal soft tissue or adjacent organs such as the uterus or ovary, or through the serosa of the tube into the peritoneal cavity. Metastatic tumor implants can be found throughout the peritoneal cavity. The tumor may obstruct the tubal lumen and present as a ruptured or unruptured hydroalpinx or hematosalpinx.

Regional Nodes. Carcinoma of the fallopian tube can also metastasize to the regional lymph nodes, which include:

- Common iliac
- Internal iliac (hypogastric)
- Obturator
- Presacral
- Para-aortic
- Inguinal
- Pelvic lymph nodes, NOS

Adequate evaluation of the regional lymph nodes usually includes aortic and pelvic nodes.

Distant Metastases. Surface implants within the pelvic cavity and the abdominal cavity are common, but these are classified as T2 and T3 disease, respectively. Parenchymal liver metastases and extraperitoneal sites, including lung and skeletal metastases, are M1.

RULES FOR CLASSIFICATION

There should be histologic confirmation of primary disease with complete evaluation of the abdomen and pelvis as outlined in the staging of ovarian malignancy (See Chapter 30). In many patients, the diagnosis may be unsuspected until the fallopian tube is examined histopathologically. Tumors may involve one or both fallopian tubes, and complete assessment of both adnexal areas affects the staging of the disease.

Clinical Staging. Perioperative imaging studies, including chest X-ray, computerized tomography scans, and magnetic resonance imaging, may identify distant metastases. Staging may be modified by imaging studies or clinical findings obtained prior to the initiation of treatment.

Pathologic Staging. Laparotomy with resection of tubal masses, usually including hysterectomy and bilateral oophorectomy, form the basis for the operative management of fallopian tube carcinoma. Widespread intra-abdominal disease is common; therefore, adequate evaluation of potentially early stage lesions requires multiple biopsies of commonly involved sites, such as omentum, pelvic peritoneum, mesentery, bowel serosa, diaphragm, and regional nodes, in order to rule out microscopic metastases to any of these sites.

Cytologic studies of ascites (if present) or of pelvic and abdominal peritoneal washings (if no ascites are present) should be included in the staging. The surgical-pathologic findings form the basis for staging. Staging is based on the findings at the time the abdomen is opened, not on the residual disease after debulking.

It may be preferable to classify a patient as TX (primary tumor cannot be assessed) if inadequate staging biopsies and/or a lack of peritoneal cytology make it inaccurate to classify the patient with confidence as early stage (Stage T3a/IIIA has not been excluded by adequate staging biopsies).
DEFINITION OF TNM

Primary Tumor (T)

<table>
<thead>
<tr>
<th>TNM Categories</th>
<th>FIGO Stages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td></td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td></td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>Tis</td>
<td>0</td>
<td>Carcinoma in situ (limited to tubal mucosa)</td>
</tr>
<tr>
<td>T1</td>
<td>I</td>
<td>Tumor limited to the fallopian tube(s)</td>
</tr>
<tr>
<td>T1a</td>
<td>IA</td>
<td>Tumor limited to one tube, without penetrating the serosal surface; no ascites</td>
</tr>
<tr>
<td>T1b</td>
<td>IB</td>
<td>Tumor limited to both tubes, without penetrating the serosal surface; no ascites</td>
</tr>
<tr>
<td>T1c</td>
<td>IC</td>
<td>Tumor limited to one or both tubes with extension onto or through the tubal serosa, or with malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T2</td>
<td>II</td>
<td>Tumor involves one or both fallopian tubes with pelvic extension</td>
</tr>
<tr>
<td>T2a</td>
<td>IIA</td>
<td>Extension and/or metastasis to the uterus and/or ovaries</td>
</tr>
<tr>
<td>T2b</td>
<td>IIB</td>
<td>Extension to other pelvic structures</td>
</tr>
<tr>
<td>T2c</td>
<td>IIC</td>
<td>Pelvic extension with malignant cells in ascites or peritoneal washings</td>
</tr>
<tr>
<td>T3</td>
<td>III</td>
<td>Tumor involves one or both fallopian tubes, with peritoneal implants outside the pelvis</td>
</tr>
<tr>
<td>T3a</td>
<td>IIIA</td>
<td>Microscopic peritoneal metastasis outside the pelvis</td>
</tr>
<tr>
<td>T3b</td>
<td>IIIB</td>
<td>Macroscopic peritoneal metastasis outside the pelvis 2 cm or less in greatest dimension</td>
</tr>
<tr>
<td>T3c</td>
<td>IIIC</td>
<td>Peritoneal metastasis more than 2 cm in diameter</td>
</tr>
</tbody>
</table>

Note: Liver capsule metastasis is T3/Stage III; liver parenchymal metastasis M1/Stage IV. Pleural effusion must have positive cytology for M1/Stage IV.

Regional Lymph Nodes (N)

NX	Regional lymph nodes cannot be assessed
N0	No regional lymph node metastasis
N1	Regional lymph node metastasis

Distant Metastasis (M)

MX	Distant metastasis cannot be assessed
M0	No distant metastasis
M1	Distant metastasis (excludes metastasis within the peritoneal cavity)

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>TN</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IA</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IC</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIA</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIC</td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIA</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIIIC</td>
<td>T3c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any N</td>
<td>M1</td>
<td></td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPES

Adenocarcinoma is the most frequently seen histology.

HISTOLOGIC GRADE (G)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX</td>
<td>Grade cannot be assessed</td>
</tr>
<tr>
<td>G1</td>
<td>Well differentiated</td>
</tr>
<tr>
<td>G2</td>
<td>Moderately differentiated</td>
</tr>
<tr>
<td>G3</td>
<td>Poorly differentiated</td>
</tr>
<tr>
<td>G4</td>
<td>Undifferentiated</td>
</tr>
</tbody>
</table>

PROGNOSTIC FACTORS

The surgical-pathologic stage is the most significant prognostic characteristic. Tumor differentiation is an important prognostic characteristic in all stages of disease. In patients with localized tumors, depth of invasion into the tubal musculature and rupture of the tube have prognostic importance. With advanced disease, the volume of residual tumor after surgical debulking appears to be related to prognosis.

OUTCOMES RESULTS

This is a very uncommon tumor. It is usually treated with surgery followed by chemotherapy. The 5-year survival in early disease is approximately 70%, but surgical staging is often inadequate. At 5 years, the overall survival for patients with advanced disease is about 20%.

BIBLIOGRAPHY

HISTOLOGIES—FALLOPIAN TUBE

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8010/2</td>
<td>Carcinoma in situ, NOS</td>
</tr>
<tr>
<td>8010/3</td>
<td>Carcinoma, NOS</td>
</tr>
<tr>
<td>8140/2</td>
<td>Adenocarcinoma in situ, NOS</td>
</tr>
<tr>
<td>8140/3</td>
<td>Adenocarcinoma, NOS</td>
</tr>
<tr>
<td>8310/3</td>
<td>Clear cell adenocarcinoma, NOS</td>
</tr>
<tr>
<td>8380/3</td>
<td>Endometrioid adenocarcinoma, NOS</td>
</tr>
<tr>
<td>8381/3</td>
<td>Endometrioid adenofibroma, malignant</td>
</tr>
<tr>
<td>8382/3</td>
<td>Endometrioid adenocarcinoma, secretory variant</td>
</tr>
<tr>
<td>8383/3</td>
<td>Endometrioid adenocarcinoma, ciliated cell variant</td>
</tr>
<tr>
<td>8440/3</td>
<td>Cystadenocarcinoma, NOS</td>
</tr>
<tr>
<td>8441/3</td>
<td>Serous cystadenocarcinoma, NOS</td>
</tr>
<tr>
<td>8460/3</td>
<td>Papillary serous cystadenocarcinoma</td>
</tr>
<tr>
<td>8461/3</td>
<td>Serous surface papillary carcinoma</td>
</tr>
<tr>
<td>8470/2</td>
<td>Mucinous cystadenocarcinoma, non-invasive</td>
</tr>
<tr>
<td>8470/3</td>
<td>Mucinous cystadenocarcinoma, NOS</td>
</tr>
<tr>
<td>8480/3</td>
<td>Mucinous adenocarcinoma</td>
</tr>
<tr>
<td>8481/3</td>
<td>Mucin-producing adenocarcinoma</td>
</tr>
<tr>
<td>8482/3</td>
<td>Mucinous adenocarcinoma, endocervical type</td>
</tr>
<tr>
<td>8490/3</td>
<td>Signet ring cell carcinoma</td>
</tr>
<tr>
<td>8560/3</td>
<td>Adenosquamous carcinoma</td>
</tr>
<tr>
<td>8562/3</td>
<td>Epithelial-myoepithelial carcinoma</td>
</tr>
<tr>
<td>8570/3</td>
<td>Adenocarcinoma with squamous metaplasia</td>
</tr>
</tbody>
</table>
FALLOPIAN TUBE

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of Specimen</th>
<th>Histopathologic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor Size</td>
<td>Laterality: □ Bilateral □ Left □ Right</td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNM</td>
<td>FIGO</td>
<td>Categories Stages</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>TX</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T0</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tis</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T1</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T1a</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T1b</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T1c</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T2</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T2a</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T2b</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T2c</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3a</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3b</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3c</td>
</tr>
</tbody>
</table>

- **Primary Tumor (T):**
 - TX: Primary tumor cannot be assessed
 - T0: No evidence of primary tumor
 - Tis: Carcinoma in situ (limited to tubal mucosa)
 - T1a: Tumor limited to the fallopian tube(s)
 - T1b: Tumor limited to one tube, without penetrating the serosal surface; no ascites
 - T1c: Tumor limited to both tubes, without penetrating the serosal surface; no ascites
 - T2: Tumor involves one or both fallopian tubes with pelvic extension
 - T2a: Extension and/or metastasis to the uterus and/or ovaries
 - T2b: Extension to other pelvic structures
 - T2c: Pelvic extension with malignant cells in ascites or peritoneal washings
 - T3: Tumor involves one or both fallopian tubes, with peritoneal implants outside the pelvis
 - T3a: Microscopic peritoneal metastasis outside the pelvis
 - T3b: Macroscopic peritoneal metastasis outside the pelvis 2 cm or less in greatest dimension
 - T3c: Peritoneal metastasis more than 2 cm in diameter

Regional Lymph Nodes (N)

□	□	NX	Regional lymph nodes cannot be assessed
□	□	N0	No regional lymph node metastasis
□	□	N1	Regional lymph node metastasis

Distant Metastasis (M)

□	□	MX	Distant metastasis cannot be assessed
□	□	M0	No distant metastasis
□	□	M1	Distant metastasis (excludes metastasis within the peritoneal cavity)

Biopsy of metastatic site performed: □ Y □ N
Source of pathologic metastatic specimen:

(continued on reverse side)

American Joint Committee on Cancer · 2002

289
Clinical Pathologic

<table>
<thead>
<tr>
<th>Stage Grouping (AJCC/UICC/FIGO)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Tis N0 M0</td>
<td></td>
</tr>
<tr>
<td>I T1 N0 M0</td>
<td></td>
</tr>
<tr>
<td>IA T1a N0 M0</td>
<td></td>
</tr>
<tr>
<td>IB T1b N0 M0</td>
<td></td>
</tr>
<tr>
<td>IC T1c N0 M0</td>
<td></td>
</tr>
<tr>
<td>II T2 N0 M0</td>
<td></td>
</tr>
<tr>
<td>II A T2a N0 M0</td>
<td></td>
</tr>
<tr>
<td>II B T2b N0 M0</td>
<td></td>
</tr>
<tr>
<td>II C T2c N0 M0</td>
<td></td>
</tr>
<tr>
<td>III T3 N0 M0</td>
<td></td>
</tr>
<tr>
<td>III A T3a N0 M0</td>
<td></td>
</tr>
<tr>
<td>III B T3b N0 M0</td>
<td></td>
</tr>
<tr>
<td>III C T3c N0 M0</td>
<td></td>
</tr>
<tr>
<td>IV Any T N1 M0</td>
<td></td>
</tr>
<tr>
<td>IV Any T Any N M1</td>
<td></td>
</tr>
</tbody>
</table>

Histologic Grade (G)

- GX Grade cannot be assessed
- G1 Well differentiated
- G2 Moderately differentiated
- G3 Poorly differentiated
- G4 Undifferentiated

Residual Tumor (R)

- RX Presence of residual tumor cannot be assessed
- R0 No residual tumor
- R1 Microscopic residual tumor
- R2 Macroscopic residual tumor

Additional Descriptors

For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "t," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix** indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
- **a prefix** designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

290

American Joint Committee on Cancer - 2002
ILLUSTRATION

Indicate on diagram primary tumor and regional nodes involved.
SUMMARY OF CHANGES

- Gestational trophoblastic tumors are effectively treated with chemotherapy even when widely metastatic so that traditional anatomic staging parameters do not adequately provide different prognostic categories. For this reason, although the anatomic categories are preserved, a scoring system of other non-anatomic risk factors has been added. This risk factor score provides the basis for substaging patients into A (low risk, score of 7 or less) or B (high risk, score of 8 or greater).
- The "Risk Factors" portion of the stage grouping has been revised to reflect the new scoring system.

INTRODUCTION

Gestational trophoblastic tumors are uncommon (1 in 1,000 pregnancies) malignancies that arise from the placenta. Usually as a result of a genetic accident in the developing egg, the maternal chromosomes are lost, and the paternal chromosomes duplicate (46xx). The resulting tumor is known as a complete hydatidiform mole: There are no fetal parts, the tumor is composed of dilated, avascular, "grape-like" vesicles that may grow as large as, or larger than, the normal pregnancy that it replaces. There is obviously no heartbeat detected, and the patient may have vaginal bleeding similar to a miscarriage. Many times, the diagnosis is not made until a dilatation and curettage is done and the tissue is examined pathologically. In some patients, fetal parts will be found in association with mild proliferative trophoblastic (placental) tissue. Such patients have a partial hydatidiform mole, which has a 69xxx or 69xxy chromosomal complement resulting from twice the normal number of paternal chromosomes. Both of these tumors usually follow a benign course, resolving completely after evacuation by dilatation and suction or curettage, but approximately 20% of complete moles and 5% of partial moles persist locally or metastasize and thus require chemotherapy.

Much less frequently (about 1 in 20,000 pregnancies in the United States), a highly malignant, rapidly growing metastatic form of gestational trophoblastic disease called choriocarcinoma is encountered. This solid, anaplastic, vascular, and aggressively proliferative tumor is easily recognized microscopically and may present with symptoms of vaginal bleeding (as with a hydatidiform mole). However, metastatic lesions may be the first sign of this lesion, which can follow any pregnancy event, including an incomplete abortion or a full-term pregnancy.

The trophoblastic tissue that makes up these tumors produces a serum tumor marker, beta-human chorionic gonadotropin (b-hCG), which is very helpful in the diagnosis and monitoring of therapy in these patients. Gestational trophoblastic tumors are very responsive to chemotherapy, with cure rates approaching 100%.

ANATOMY

Because of the responsiveness of this tumor to treatment and the accuracy of the serum tumor marker hCG in reflecting the status of disease, the traditional anatomic staging system used in most solid tumors has little prognostic significance. Trophoblastic tumors not associated with pregnancy (ovarian teratomas) are not included in this classification.

Primary Site. By definition, gestational trophoblastic tumors arise from placental tissue in the uterus. Although most of these tumors are non-invasive and are removed by dilatation and suction evacuation, local invasion of the myometrium can occur. When this is diagnosed on a hysterectomy specimen (rarely done these days), it may be reported as an invasive hydatidiform mole.

Regional lymph nodes. Nodal involvement in gestational trophoblastic tumors is rare but has a very poor
prognosis when diagnosed. There is no regional nodal designation in the staging of these tumors. Nodal metastases should be classified as metastatic (M1) disease.

Metastatic sites. This is a highly vascular tumor that results in frequent, widespread metastases when these lesions become malignant. The cervix and vagina are common pelvic sites of metastases (T2), and the lungs are often involved by distant metastases (M1a). Other, less frequently encountered metastatic sites include kidney, gastrointestinal tract, and spleen (M1b). The liver and brain are occasionally involved and may harbor metastatic sites that are difficult to treat with chemotherapy.

RULES FOR CLASSIFICATION

Gestational trophoblastic tumors have a very high cure rate, and as a result, the ultimate goal of staging is to identify patients who are likely to respond to less intensive chemotherapeutic protocols and distinguish those individuals from patients who will require more intensive chemotherapy in order to achieve remission. In 1991, the International Federation of Gynecology and Obstetrics (FIGO) added non-anatomic risk factors to the traditional staging system. Further modifications have been made in an attempt to merge several prognostic classification systems. The current staging classification is still evolving.

Indications for Treatment. The following criteria are suggested for the diagnosis of trophoblastic tumors requiring chemotherapy:

- Three or more values of hCG showing no significant change (a plateau) over 4 weeks, or
- Rise of hCG of 10% or greater for 2 values over 3 weeks or longer, or
- Persistence of elevated hCG 6 months after evacuation of molar pregnancy, or
- Histologic diagnosis of choriocarcinoma

Diagnosis of Metastasis

- For the diagnosis of lung metastasis, chest X-ray is appropriate and should be used to count metastases for risk scoring. Lung CT scan may be used.
- For the diagnosis of intra-abdominal metastasis, CT scanning is preferred, although many institutions still use ultrasound to detect liver metastasis.
- For the diagnosis of brain metastasis, MRI is superior to CT scan, even with 1-cm cuts.

Prognostic Index Scores. The score on the Prognostic Scoring Index is used to substage patients (Table 32.1). Each stage is anatomically defined, but stage A (low risk) and B (high risk) are assigned on the basis of a non-anatomic risk factor scoring system. The prognostic scores are 0, 1, 2, and 4 for the individual risk factors. The current prognostic scoring system eliminates the ABO blood group risk factors that were featured in the WHO scoring system and upgrades the risk factor for liver metastasis from 2 to 4, the highest category.

Low risk is a score of 7 or less, and high risk is a score of 8 or greater.

DEFINITION OF TNM

Primary Tumor (T)

<table>
<thead>
<tr>
<th>TNM Categories</th>
<th>FIGO Stages</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td></td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>I</td>
<td>Tumor confined to uterus</td>
</tr>
<tr>
<td>T1</td>
<td>II</td>
<td>Tumor extends to other genital structures (ovary, tube, vagina, broad ligaments) by metastasis or direct extension</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>Distant Metastasis</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>Metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
<tr>
<td>M1a</td>
<td>Lung metastasis</td>
</tr>
<tr>
<td>M1b</td>
<td>All other distant metastasis</td>
</tr>
</tbody>
</table>

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>M</th>
<th>Risk Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage I</td>
<td>T1</td>
<td>M0</td>
<td>Low risk</td>
</tr>
<tr>
<td>Stage IA</td>
<td>T1</td>
<td>M0</td>
<td>High risk</td>
</tr>
<tr>
<td>Stage IB</td>
<td>T1</td>
<td>M0</td>
<td>Unknown</td>
</tr>
<tr>
<td>Stage II</td>
<td>T2</td>
<td>M0</td>
<td>Low risk</td>
</tr>
<tr>
<td>Stage III</td>
<td>Any T</td>
<td>M1a</td>
<td>Unknown</td>
</tr>
<tr>
<td>Stage IIIA</td>
<td>Any T</td>
<td>M1a</td>
<td>High risk</td>
</tr>
<tr>
<td>Stage IIIB</td>
<td>Any T</td>
<td>M1a</td>
<td>Low risk</td>
</tr>
<tr>
<td>Stage IV</td>
<td>Any T</td>
<td>M1b</td>
<td>Unknown</td>
</tr>
<tr>
<td>Stage IVA</td>
<td>Any T</td>
<td>M1b</td>
<td>Low risk</td>
</tr>
<tr>
<td>Stage IVB</td>
<td>Any T</td>
<td>M1b</td>
<td>High risk</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

Hydatidiform mole
- Complete
- Partial
Invasive hydatidiform mole
Choriocarcinoma
Placental site trophoblastic tumors
TABLE 32.1. Prognostic Scoring Index

<table>
<thead>
<tr>
<th>Prognostic Factor</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td><40</td>
<td>≥40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antecedent Pregnancy</td>
<td>Hydatidiform mole</td>
<td>Abortion</td>
<td>Term pregnancy</td>
<td></td>
</tr>
<tr>
<td>Interval months from index pregnancy</td>
<td><4</td>
<td>4–<7</td>
<td>7–12</td>
<td>>12</td>
</tr>
<tr>
<td>Pretreatment hCG (IU/ml)</td>
<td><10⁶</td>
<td>≥10⁶–<10⁷</td>
<td>10⁷–<10⁸</td>
<td>≥10⁸</td>
</tr>
<tr>
<td>Largest tumor size, including uterus</td>
<td><3 cm</td>
<td>3–<5 cm</td>
<td>≥5 cm</td>
<td></td>
</tr>
<tr>
<td>Site of metastases</td>
<td>Lung</td>
<td>Spleen, kidney</td>
<td>Gastrointestinal tract</td>
<td>Brain, liver</td>
</tr>
<tr>
<td>Number of metastases identified</td>
<td>1–4</td>
<td>5–8</td>
<td>>8</td>
<td></td>
</tr>
<tr>
<td>Previous failed chemotherapy</td>
<td>Single drug</td>
<td></td>
<td>Two or more drugs</td>
<td></td>
</tr>
</tbody>
</table>

Total Score

Low risk is a score of 7 or less. High risk is a score of 8 or greater.

OUTCOMES RESULTS

Gestational trophoblastic tumors may require only uterine evacuation for treatment, but even when chemotherapy is required, cure rates approach 100%. Prognostic factors are listed in the Prognostic Scoring Index. Patients with low-risk disease are usually treated with single-agent chemotherapy, whereas combined, multiple-agent chemotherapy usually results in a cure for high-risk patients.

BIBLIOGRAPHY

HISTOLOGIES—GESTATIONAL TROPHOBLASTIC TUMORS

9100/0 Hydatidiform mole, NOS
9100/1 Invasive hydatidiform mole
9100/3 Choriocarcinoma, NOS
9101/3 Choriocarcinoma combined with other germ cell elements
9102/3 Malignant teratoma, trophoblastic
9103/0 Partial hydatidiform mole
9104/1 Placental site trophoblastic tumor
9105/3 Trophoblastic tumor, epithelioid
<table>
<thead>
<tr>
<th>Type of Specimen</th>
<th>Histopathologic Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primary Tumor (T)<sup>(1)</sup></td>
</tr>
<tr>
<td></td>
<td>TNM<sup>*</sup> FIGO Categories Stages</td>
</tr>
<tr>
<td></td>
<td>TX</td>
</tr>
<tr>
<td></td>
<td>T0</td>
</tr>
<tr>
<td></td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td>T2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>M1a</td>
</tr>
<tr>
<td>M1b</td>
</tr>
</tbody>
</table>

Biopsy of metastatic site performed ... □ Y □ N

Source of pathologic metastatic specimen __________________________

Note: There is no regional nodal staging for this tumor.

<table>
<thead>
<tr>
<th>Stage Grouping<sup>(2)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>IA</td>
</tr>
<tr>
<td>IB</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>IIA</td>
</tr>
<tr>
<td>IIB</td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td>IIIA</td>
</tr>
<tr>
<td>IIIIB</td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td>IVA</td>
</tr>
<tr>
<td>IVB</td>
</tr>
</tbody>
</table>

(continued on reverse side)
GESTATIONAL TROPHOBLASTIC TUMORS

Histopathologic Type
- □ Hydatidiform mole
 - □ Complete
 - □ Partial
- □ Invasive hydatidiform mole
- □ Choriocarcinoma
- □ Placental site trophoblastic tumors

Residual Tumor (R)
- □ RX Presence of residual tumor cannot be assessed
- □ R0 No residual tumor
- □ R1 Microscopic residual tumor
- □ R2 Macroscopic residual tumor

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y", "n", and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- □ m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- □ y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- □ r prefix indicates a recurrent tumor when staged after a disease-free interval.
- □ a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators Scoring Index

<table>
<thead>
<tr>
<th>Prognostic Factor</th>
<th>Risk Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Age</td>
<td><40</td>
</tr>
<tr>
<td>Antecedent Pregnancy</td>
<td>H. mole</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval months from index pregnancy</td>
<td><4</td>
</tr>
<tr>
<td>Pretreatment hCG (IU/ml)</td>
<td><10^4</td>
</tr>
<tr>
<td>Largest tumor size including uterus</td>
<td><3 cm</td>
</tr>
<tr>
<td>Site of metastases</td>
<td>Lung</td>
</tr>
<tr>
<td>Number of metastases identified</td>
<td>1-4</td>
</tr>
<tr>
<td>Previous failed chemotherapy</td>
<td>Single drug</td>
</tr>
</tbody>
</table>

Total Score

Low Risk is a score of 7 or less. High risk is a score of 8 or greater.
ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.
PART IX
Genitourinary Sites
33
Penis
(Melanomas are not included.)

SUMMARY OF CHANGES
- The definition of TNM and the Stage Grouping for this chapter have not changed from the Fifth Edition.

INTRODUCTION
Cancers of the penis are rare in the United States, although the incidence varies in different countries of the world. Most are squamous cell carcinomas that arise in the skin or on the glans penis. Prognosis is favorable provided that the lymph nodes are not involved. Melanomas can also occur. The staging classification, however, applies to carcinomas. Melanomas are staged in Chapter 24. Some cancers of the penis may be described as verrucous. Similarly, basaloid tumors are recognized as a subtype of squamous carcinoma. These are included under this classification. An in situ lesion is also included and by definition should be coded as an in situ carcinoma of the penis.

ANATOMY
Primary Site. The penis is composed of three cylindrical masses of cavernous tissue bound together by fibrous tissue. Two masses are lateral and are known as the corpora cavernosa penis. The corpus spongiosum penis is a median mass and contains the greater part of the urethra. The penis is attached to the front and the sides of the pubic arch. The skin covering the penis is thin and loosely connected with the deeper parts of the organ. This skin at the root of the penis is continuous with that over the scrotum and perineum. Distally, the skin becomes folded upon itself to form the prepuce, or foreskin. Circumcision has been associated with a decreased incidence of cancer of the penis.

Regional Lymph Nodes. The regional lymph nodes are:
- Deep inguinal: Rosenmuller’s or Cloquet’s node
- External iliac
- Internal iliac (hypogastric)
- Pelvic nodes, NOS

Metastatic Sites. Lung, liver, and bone are most often involved.

RULES FOR CLASSIFICATION
Clinical Staging. Clinical examination, endoscopy where possible, and histologic confirmation are required. Imaging techniques are indicated for metastatic disease detection.

Pathologic Staging. Complete resection of the primary site with appropriate margins is required. Where regional lymph node involvement is suspected, lymphadenectomy is usually indicated.

The definitions of Primary Tumor (T) for T1, T2, T3 and T4 are illustrated in Figures 33.1–33.5.

DEFINITION OF TNM

Primary Tumor (T)
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
Tis Carcinoma in situ
Ta Non-invasive verrucous carcinoma
T1 Tumor invades subepithelial connective tissue
T2 Tumor invades corpus spongiosum or cavernosum
T3 Tumor invades urethra or prostate
T4 Tumor invades other adjacent structures
Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1 Metastasis in a single superficial, inguinal lymph node
N2 Metastasis in multiple or bilateral superficial inguinal lymph nodes
N3 Metastasis in deep inguinal or pelvic lymph node(s) unilateral or bilateral

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis

Additional Descriptor
The m suffix indicates the presence of multiple primary tumors and is recorded in parentheses—e.g., pTa(m)N0M0.

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>Tis</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ta</td>
<td></td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>T1</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>Stage IV</td>
<td>T4</td>
<td>Any N</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

Cell types are limited to carcinomas.

HISTOLOGIC GRADE (G)

GX Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3–4 Poorly differentiated or undifferentiated
FIG. 33.1. Ta: Non-invasive verrucous carcinoma.

FIG. 33.2. T1: Tumor invading subepithelial connective tissue.

FIG. 33.3. T2: Tumor invading corpus spongiosum or cavernosum.

FIG. 33.4. T3: Tumor invading urethra or prostate.

FIG. 33.5. T4: Tumor invading other adjacent structures.
BIBLIOGRAPHY

HISTOLOGIES—PENIS

8010/2 Carcinoma in situ, NOS
8010/3 Carcinoma, NOS
8051/3 Verrucous carcinoma, NOS
8070/2 Squamous cell carcinoma in situ, NOS
8070/3 Squamous cell carcinoma, NOS
8081/2 Bowen disease
8090/3 Basal cell carcinoma
8140/2 Adenocarcinoma in situ, NOS
8140/3 Adenocarcinoma, NOS
8560/3 Adenosquamous carcinoma
PENIS

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Specimen</td>
<td>Histopathologic Type</td>
</tr>
<tr>
<td>Tumor Size</td>
<td></td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TX: Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0: No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tis: Carcinoma in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta: Non-invasive verrucous carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1: Tumor invades subepithelial connective tissue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2: Tumor invades corpus spongiosum or cavernosum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3: Tumor invades urethra or prostate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4: Tumor invades other adjacent structures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX: Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0: No regional lymph node metastasis</td>
</tr>
<tr>
<td>N1: Metastasis in a single superficial inguinal lymph node</td>
</tr>
<tr>
<td>N2: Metastasis in multiple or bilateral superficial inguinal lymph nodes</td>
</tr>
<tr>
<td>N3: Metastasis in deep inguinal or pelvic lymph node(s), unilateral or bilateral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX: Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0: No distant metastasis</td>
</tr>
<tr>
<td>M1: Distant metastasis</td>
</tr>
</tbody>
</table>

Biopsy of metastatic site performed... Y, N

Source of pathologic metastatic specimen...

<table>
<thead>
<tr>
<th>Stage Grouping</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>III</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>IV</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(continued on reverse side)

American Joint Committee on Cancer • 2002
Histologic Grade (G)
- GX: Grade cannot be assessed
- G1: Well differentiated
- G2: Moderately differentiated
- G3-4: Poorly differentiated or undifferentiated

Residual Tumor (R)
- RX: Presence of residual tumor cannot be assessed
- R0: No residual tumor
- R1: Microscopic residual tumor
- R2: Macroscopic residual tumor

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
- a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

Physician's Signature ____________________________ Date ____________________________
Prostate
(Sarcomas and transitional cell carcinomas are not included.)

C61.9 Prostate gland

SUMMARY OF CHANGES

- T2 lesions have been divided to include T2a, T2b, and T2c once again. These are the same subcategories found in the Fourth Edition of the manual.
- Gleason score is emphasized as the grading system of choice and using the terms well differentiated, moderately differentiated, and poorly differentiated for grading is not recommended.

INTRODUCTION

Prostate cancer is the most common cancer in men, with increasing incidence in older age groups. Prostate cancer has a tendency to metastasize to bone. Earlier detection is possible with a blood test, prostate-specific antigen (PSA), and diagnosis is generally made using transrectal ultrasound (TRUS) guided biopsy.

ANATOMY

Primary Site. Adenocarcinoma of the prostate frequently arises within the peripheral zone of the gland, where it may be amenable to detection by digital rectal examination (DRE). A less common site of origin is the anteromedial prostate, the transition zone, which is remote from the rectal surface and is the site of origin of benign nodular hyperplasia. The central zone, which makes up most of the base of the prostate, seldom gives rise to cancer but is often invaded by the spread of large cancers. Pathologically, cancers of the prostate are often multifocal.

There is agreement that the incidence of both clinical and latent carcinoma increases with age. However, this cancer is rarely diagnosed clinically in men under 40 years of age. There are substantial limitations in the ability of both DRE and TRUS to define precisely the size or local extent of disease; DRE is currently the most common modality used to define the local stage. Heterogeneity within the T1c category resulting from inherent limitations of either DRE or imaging to quantify the cancer may be balanced by the inclusion of other prognostic factors, such as histologic grade, PSA level, and possibly extent of cancer on needle biopsies that contain cancer. Diagnosis of clinically suspicious areas of the prostate can be confirmed histologically by needle biopsy. Less commonly, prostate cancer may be diagnosed by inspection of the resected tissue from a transurethral resection of the prostate (TURP) for obstructive voiding symptoms.

The histologic grade of the prostate cancer is important for prognosis. The histopathologic grading of these tumors can be complex because of the morphologic heterogeneity so often encountered in surgical specimens. Either a histologic or a pattern type of grading method can be used. The Gleason score for assessing the histologic pattern of prostate cancer is preferred.

Regional Lymph Nodes. The regional lymph nodes are the nodes of the true pelvis, which essentially are the pelvic nodes below the bifurcation of the common iliac arteries. They include the following groups:

Pelvic, NOS
Hypogastric
Obturator
Iliac (internal, external, or NOS)
Sacral (lateral, presacral, promontory [Gerota's], or NOS)

Laterality does not affect the "N" classification.

Distant Lymph Nodes. Distant lymph nodes lie outside the confines of the true pelvis. They can be imaged using
ultrasound, computed tomography, magnetic resonance imaging, or lymphangiography. Although enlarged lymph nodes can occasionally be visualized, because of a stage migration associated with PSA screening, very few patients will be found to have nodal disease, so false-positive and false-negative results are common when imaging tests are employed. In lieu of imaging, risk tables are generally used to determine individual patient risk of nodal involvement. Involvement of distant lymph nodes is classified as M1a. The distant lymph nodes include:

- Aortic (para-aortic lumbar)
- Common iliac
- Ingual, deep
- Supraclavicular
- Cervical
- Scalene
- Retroperitoneal, NOS

The significance of regional lymph node metastasis, N, in staging prostate cancer lies in the presence of metastatic foci present within the lymph nodes.

Metastatic Sites. Osteoblastic metastases are the most common non-nodal site of prostate cancer metastasis. In addition, this tumor frequently spreads to distant lymph nodes. Lung and liver metastases are usually identified late in the course of the disease.

RULES FOR CLASSIFICATION

Clinical Staging. Primary tumor assessment includes digital rectal examination of the prostate and histologic or cytologic confirmation of prostate carcinoma. All information available before the first definitive treatment may be used for clinical staging. Imaging techniques may be valuable in some cases; TRUS is the most commonly used imaging tool, but it has a poor ability to identify tumor location and extent. Tumor that is found in one or both lobes by needle biopsy, but is not palpable or visible by imaging, is classified as T1c. Considerable uncertainty exists about the ability of imaging to define the extent of a non-palpable lesion (see the definition of T1c below). For research purposes, investigators should specify whether clinical staging into the T1c category is based on DRE only or on DRE plus TRUS. In general, most patients diagnosed in an environment of ubiquitous PSA screening will be at a low risk of positive nodes or metastases, and the risk of false-negative imaging studies in asymptomatic patients has exceeded the frequency of true-positive or true-negative studies in several reports. For this reason, in patients with Gleason scores less than 7–8 and PSA values < 20 ng/ml, imaging studies may not always be helpful in accurate staging.

Since publication of the Fifth Edition of the AJCC Cancer Staging Manual, review of the results of clinical series of pa-

tients with T2 tumors has demonstrated that recurrence-free survival following treatment was significantly different if the Fourth Edition system of T2a, T2b, and T2c stratification was used. Therefore, to enhance the characterization of palpable tumors, the Sixth Edition has reincorporated the three clinical stages T2a (palpable tumor confined to less than one-half of one lobe), T2b (palpable tumor involving more than half of one lobe but not both lobes), and T2c (tumor involving both lobes).

Pathologic Staging. In general, total prostatectomy, including regional node specimen, and histologic confirmation are required for pathologic T classification. However, under certain circumstances, pathologic T classification can be determined with other means. For example, (1) positive biopsy of the rectum permits a pT4 classification without prostatectomy-rectal ulceration; and (2) a biopsy revealing carcinoma in extraprostatic soft tissue permits a pT3 classification, as does a biopsy revealing adenocarcinoma infiltrating the seminal vesicles. However, there is no pT1 category because there is insufficient tissue to assess the highest pT category. Margin positivity, potentially a consequence of surgical technique rather than anatomic extent of disease, should be specified along with pathologic stage. (Positive surgical margin should be indicated by an R1 descriptor [residual microscopic disease].)

In addition to pathologic stage, independent prognostic factors for survival have been identified for prostate cancer. These include age of patient, comorbid diseases, histologic grade, Gleason score, PSA, and percent free-PSA level, surgical margin status, and ploidy.

DEFINITION OF TNM

Primary Tumor (T)

- **Clinical**
 - TX: Primary tumor cannot be assessed
 - T0: No evidence of primary tumor
 - T1: Clinically apparent tumor either palpable or visible by imaging
 - T1a: Tumor incidental histologic finding in 5% or less of tissue resected
 - T1b: Tumor incidental histologic finding in more than 5% of tissue resected
 - T1c: Tumor identified by needle biopsy (e.g., because of elevated PSA)
 - T2: Tumor confined within prostate
 - T2a: Tumor involves one-half of one lobe or less
 - T2b: Tumor involves more than one-half of one lobe but not both lobes
 - T2c: Tumor involves both lobes
 - T3: Tumor extends through the prostate capsule
 - T3a: Extracapsular extension (unilateral or bilateral)
 - T3b: Tumor invades seminal vesicle(s)
T4 Tumor is fixed or invades adjacent structures other than seminal vesicles: bladder neck, external sphincter, rectum, levator muscles, and/or pelvic wall

*Note: Tumor found in one or both lobes by needle biopsy, but not palpable or reliably visible by imaging, is classified as T1c.

**Note: Invasion into the prostatic apex or into (but not beyond) the prostatic capsule is classified not as T3 but as T2.

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage I</th>
<th>T1a</th>
<th>N0</th>
<th>M0</th>
<th>G1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage II</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
<td>G2, 3–4</td>
</tr>
<tr>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td>Any G</td>
</tr>
<tr>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td>Any G</td>
</tr>
<tr>
<td>T1</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td>Any G</td>
</tr>
<tr>
<td>T2</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td>Any G</td>
</tr>
<tr>
<td>Stage III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
<td>Any G</td>
</tr>
<tr>
<td>Stage IV</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
<td>Any G</td>
</tr>
<tr>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
<td></td>
<td>Any G</td>
</tr>
<tr>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
<td></td>
<td>Any G</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

This classification applies to adenocarcinomas and squamous carcinomas, but not to sarcoma or transitional cell carcinoma of the prostate. Adjectives used to describe adenocarcinomas can include mucinous, small cell, papillary, ductal, and neuroendocrine. Transitional cell carcinoma of the prostate is classified as a urethral tumor (see Chapter 39). There should be histologic confirmation of the disease.

HISTOLOGIC GRADE (G)

Gleason score is considered to be the optimal method of grading, because this method takes into account the inherent heterogeneity of prostate cancer, and because it has been clearly shown that this method is of great prognostic value. A primary and a secondary pattern (the range of each is 1–5) are assigned and then summed to yield a total score. Scores of 2–10 are thus possible. (If a single focus of disease is seen, it should be reported as both scores. For example, if a single focus of Gleason 3 disease is seen, it is reported as 3 + 3.)

GX	Grade cannot be assessed
G1	Well differentiated (slight anaplasia) (Gleason 2–4)
G2	Moderately differentiated (moderate anaplasia) (Gleason 5–6)
G3–4	Poorly differentiated/undifferentiated (marked anaplasia) (Gleason 7–10)

PROGNOSTIC FEATURES

Prostate-specific antigen, grade, and tumor stage all have a profound relationship with prognosis. An increasing number of molecular markers (such as ploidy, p53, and bcl-2) have been identified that predict stage at diagnosis and outcomes following therapy. A number of algorithms have been published that enable the merging of these data to predict local stage, risk of positive nodes, or risk of treatment failure.

Recent studies have demonstrated that Gleason score provides extremely important information about prognosis.
In an analysis, conducted by the Radiation Therapy Oncology Group (RTOG), of nearly 1500 men treated on prospective randomized trials, Gleason score was the single most important predictor of death from prostate cancer. Combined with the AJCC stage, investigators demonstrated that four prognostic subgroups could be identified that allowed disease-specific survival to be predicted at 5, 10, and 15 years (See Fig. 34.1). Additional studies conducted by the RTOG also demonstrated that a pretreatment PSA > 20 ng/ml predicts a greater likelihood of distant failure and a greater need for hormonal therapy. A recent validation study confirmed that a PSA > 20 ng/ml was associated with a greater risk of prostate cancer death. Thus, in addition to the AJCC clinical stage, pretreatment PSA and Gleason score provide important prognostic information that might affect decisions regarding therapy. Other clinical features, such as the number of positive biopsies and the presence of perineural invasion, may provide additional prognostic information. However, long-term confirmatory, multi-institutional studies demonstrating the independent impact of these factors on survival from prostate cancer are not yet available.

OUTCOMES BY STAGE, GRADE, AND PSA

A number of endpoints are useful in assessing disease outcomes. Biochemical (or PSA)-free recurrence indicates the likelihood that a patient treated for prostate cancer remains free of recurrent disease as manifested by a rising PSA. Prostate cancer-specific survival and overall survival are also useful endpoints.

BIBLIOGRAPHY

Carvalhal GF, Smith DS, Mager DE, Ramos C, Catalona WI: Digital rectal examination for detecting prostate cancer at
prostate-specific antigen levels of 4 ng/ml or less. J Urol 161(3):835–839, 1999

Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD, Walsh PC: Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 281(17):1591–1597, 1999

Ramos CG, Carvalhal GF, Smith DS, Mager DE, Catalona WJ: Clinical and pathological characteristics, and recurrence rates of Stage T1c versus T2a or T2b prostate cancer. J Urol 161(5):1525–1529, 1999

HISTOLOGIES—PROSTATE

8041/3 Small cell carcinoma, NOS
8070/3 Squamous cell carcinoma, NOS
8074/3 Squamous cell carcinoma, spindle cell
8082/3 Lymphoepithelial carcinoma
8098/3 Adenoid basal carcinoma
8120/3 Transitional cell carcinoma, NOS
8140/2 Adenocarcinoma in situ, NOS
8140/3 Adenocarcinoma, NOS
8148/2 Glandular intraepithelial neoplasia, grade III
8200/3 Adenoid cystic carcinoma
8240/3 Carcinoid tumor, NOS
8246/3 Neuroendocrine carcinoma, NOS
8260/3 Papillary adenocarcinoma
8480/3 Mucinous adenocarcinoma
8490/3 Signet ring cell carcinoma
8500/3 Infiltrating duct carcinoma, NOS
8560/3 Adenosquamous carcinoma
Prostate

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Type of Specimen</th>
<th>Histopathologic Type</th>
</tr>
</thead>
</table>

Definitions

<table>
<thead>
<tr>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>pT2 Organ confined</td>
</tr>
<tr>
<td>□</td>
<td>pT2a Unilateral, one-half of one lobe or less</td>
</tr>
<tr>
<td>□</td>
<td>pT2b Unilateral, involving more than one-half of lobe but not both lobes</td>
</tr>
<tr>
<td>□</td>
<td>pT2c Bilateral disease</td>
</tr>
<tr>
<td>□</td>
<td>pT3 Extraprostatic extension</td>
</tr>
<tr>
<td>□</td>
<td>pT3a Extraprostatic extension</td>
</tr>
<tr>
<td>□</td>
<td>pT3b Seminal vesicle invasion</td>
</tr>
<tr>
<td>□</td>
<td>pT4 Invasion of bladder, rectum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>TX Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>□</td>
<td>Ti No evidence of primary tumor</td>
</tr>
<tr>
<td>□</td>
<td>T1 Clinically apparent tumor neither palpable nor visible by imaging</td>
</tr>
<tr>
<td>□</td>
<td>T1a Tumor incidental histologic finding in 5% or less of tissue resected</td>
</tr>
<tr>
<td>□</td>
<td>T1b Tumor incidental histologic finding in more than 5% of tissue resected</td>
</tr>
<tr>
<td>□</td>
<td>T1c Tumor identified by needle biopsy (e.g., because of elevated PSA)</td>
</tr>
<tr>
<td>□</td>
<td>T2 Tumor confined within prostate</td>
</tr>
<tr>
<td>□</td>
<td>T2a Tumor involves one-half of one lobe or less</td>
</tr>
<tr>
<td>□</td>
<td>T2b Tumor involves more than one-half of one lobe but not both lobes</td>
</tr>
<tr>
<td>□</td>
<td>T2c Tumor involves both lobes</td>
</tr>
<tr>
<td>□</td>
<td>T3 Tumor extends through the prostate capsule</td>
</tr>
<tr>
<td>□</td>
<td>T3a Extracapsular extension (unilateral or bilateral)</td>
</tr>
<tr>
<td>□</td>
<td>T3b Tumor invades seminal vesicle(s)</td>
</tr>
<tr>
<td>□</td>
<td>T4 Tumor is fixed or invades adjacent structures other than seminal vesicles: bladder neck, external sphincter, rectum, levator muscles, and/or pelvic wall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>pNX Regional nodes not sampled</td>
</tr>
<tr>
<td>□</td>
<td>pN0 No positive regional nodes</td>
</tr>
<tr>
<td>□</td>
<td>pN1 Metastases in regional node(s)</td>
</tr>
<tr>
<td>□</td>
<td>N0 No regional lymph node metastasis</td>
</tr>
<tr>
<td>□</td>
<td>N1 Metastasis in regional lymph node(s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>M</td>
<td>MX Distant metastasis cannot be assessed (not evaluated by any modality)</td>
</tr>
<tr>
<td>□</td>
<td>M0</td>
<td>M0 No distant metastasis</td>
</tr>
<tr>
<td>□</td>
<td>M1</td>
<td>M1 Distant metastasis</td>
</tr>
<tr>
<td>□</td>
<td>M1a</td>
<td>M1a Non-regional lymph node(s)</td>
</tr>
<tr>
<td>□</td>
<td>Mlb</td>
<td>Mlb Bone(s)</td>
</tr>
<tr>
<td>□</td>
<td>M1c</td>
<td>M1c Other site(s) with or without bone disease</td>
</tr>
</tbody>
</table>

Biopsy of metastatic site performed... □ Y... □ N
Source of pathologic metastatic specimen

(continued on reverse side)
PROSTATE

Stage Grouping

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathological</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Tla N0 M0 G1</td>
</tr>
<tr>
<td>II</td>
<td>Tla N0 M0 G2, 3-4</td>
</tr>
<tr>
<td></td>
<td>Tb N0 M0 Any G</td>
</tr>
<tr>
<td></td>
<td>Tc N0 M0 Any G</td>
</tr>
<tr>
<td></td>
<td>T1 N0 M0 Any G</td>
</tr>
<tr>
<td></td>
<td>T2 N0 M0 Any G</td>
</tr>
<tr>
<td></td>
<td>T3 N0 M0 Any G</td>
</tr>
<tr>
<td></td>
<td>T4 N0 M0 Any G</td>
</tr>
<tr>
<td></td>
<td>Any T N1 M0 Any G</td>
</tr>
<tr>
<td></td>
<td>Any T Any N M1 Any G</td>
</tr>
</tbody>
</table>

Histologic Grade (G)

- **Gx** Grade cannot be assessed
- **G1** Well differentiated (slight anaplasia) (Gleason 2-4)
- **G2** Moderately differentiated (moderate anaplasia) (Gleason 5-6)
- **G3-4** Poorly differentiated/undifferentiated (marked anaplasia) (Gleason 7-10)

Residual Tumor (R)

- **RX** Presence of residual tumor cannot be assessed
- **R0** No residual tumor
- **R1** Microscopic residual tumor
- **R2** Macroscopic residual tumor

Additional Descriptors

- **m** suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: `T(m)NM`.
- **y** prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The yTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- **r** prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- **a** prefix designates the state determined at autopsy: aTNM.

Prognostic Indicators

- **PSA**
- **Gleason score**
- **Ploidy**
- **Molecular markers** (e.g., p53, bcl-2)

ILLUSTRATION

This diagram is for use with the prostate diagram. Sketch in extent of tumor.

Physician's Signature ___________________________ **Date** _____________

American Joint Committee on Cancer • 2002
Testis

INTRODUCTION

Cancers of the testis are usually found in young adults and account for less than 1% of all malignancies in males. However, during the 20th century, the incidence has more than doubled. Cryptorchidism is a predisposing condition, and other associations include atypical germ cells and multiple atypical nevi. Germ cell tumors of the testis are categorized into two main histologic types: seminomas and non-seminomas. The latter group is composed of either individual or combinations of histologic subtypes, including embryonal carcinoma, teratoma, choriocarcinoma, and yolk sac tumor. The presence of serum markers, including alpha-fetoprotein (AFP), human chorionic gonadotropin (hCG), and lactate dehydrogenase (LDH), is frequent in this disease. Staging and prognostication are based on determination of the extent of disease and assessment of serum tumor markers. Cancer of the testis is highly curable, even in cases with advanced, metastatic disease.

ANATOMY

Primary Site. The testes are composed of convoluted seminiferous tubules with a stroma containing functional endocrine interstitial cells. Both are encased in a dense capsule, the tunica albuginea, with fibrous septa extending into the testes and separating them into lobules. The tubules converge and exit at the mediastinum of the testis into the rete testis and efferent ducts, which join a single duct. This duct—the epididymis—coils outside the upper and lower poles of the testicle and then joins the vas deferens, a muscular conduit that accompanies the vessels and lymphatic channels of the spermatic cord. The major route for local extension of cancer is through the lymphatic channels. The tumor emerges from the mediastinum of the testis and courses through the spermatic cord. Occasionally, the epididymis is invaded early, and then the external iliac nodes may become involved. If there has been previous scrotal or inguinal surgery or if invasion of the scrotal wall is found (though this is rare), then the lymphatic spread may be to inguinal nodes.

Regional Lymph Nodes. The following nodes are considered regional:

- Interaortocaval
- Para-aortic (Periaortic)
- Paracaval
- Presacral
- Precaval
- Retroaortc
- Retrocaval

The intrapelvic, external iliac, and inguinal nodes are considered regional only after scrotal or inguinal surgery prior to the presentation of the testis tumor. All nodes outside the regional nodes are distant. Nodes along the spermatic vein are considered regional.

Metastatic Sites. Distant spread of testicular tumors occurs most commonly to the lymph nodes, followed by metastases to the lung, liver, bone, and other visceral sites. Stage is dependent on the extent of disease and on the determination of serum tumor markers. Extent of disease includes assessment for involvement and size of regional lymph nodes, evidence of disease in non-regional lymph nodes, and metastases to pulmonary and non-pulmonary visceral sites. The stage is subdivided on the basis of the presence and degree of elevation of serum tumor markers. Serum tumor markers are measured immediately after orchiectomy and, if elevated, should be measured serially after orchiectomy to determine whether normal decay curves are followed. The physiological half-life of AFP is 5–7 days, and the half-life of HCG is 24–48 hours. The presence of prolonged half-life times implies the presence of residual disease after orchiectomy. It should be noted that in some cases, tumor marker...
release may occur (for example, in response to chemotherapy or handling of a primary tumor intraoperatively) and may cause artificial elevation of circulating tumor marker levels. The serum level of lactate dehydrogenase (LDH) has prognostic value in patients with metastatic disease and is included for staging.

RULES FOR CLASSIFICATION

Clinical Staging. Staging of testis tumors includes determination of the T, N, M, and S categories. Clinical examination and histologic assessment are required for clinical staging. Radiographic assessment of the chest, abdomen, and pelvis is necessary to determine the N and M status of disease. Serum tumor markers, including AFP, hCG, and LDH, should be obtained to complete the status of the serum tumor markers (S).

Pathologic Staging. Histologic evaluation of the radical orchiectomy specimen must be used for the pT classification. The gross size of the tumor should be recorded. Careful gross examination should determine whether the tumor is intratesticular or extratesticular. If intratesticular, it should be determined whether the tumor extends through the tunica albuginea and whether it invades the epididymis and/or spermatic cord. Tissue sections should document these findings. The tumor should be sampled extensively, including all grossly diverse areas (hemorrhagic, mucoid, solid, cystic, etc.). The junction of tumor and non-neoplastic testis and at least one section remote from the tumor should be obtained to determine whether intratubular germ cell neoplasia (carcinoma in situ) is present. These sections will allow assessment of either the presence or absence of vascular invasion. If possible, most tissue sections should include overlying tunica albuginea. Small tumors (2 cm or less) may be submitted in toto. In larger tumors, a sufficient amount of tissue should be sampled, perhaps one section for each 1 or 2 cm of maximum tumor diameter.

The specimens from a defined node-bearing area (such as retroperitoneal lymph node dissection) must be used for the pN classification. Retroperitoneal lymph node dissection should be oriented by the surgeon. All lymph nodes should be dissected, and the diameters of the largest nodes should

FIG. 35.1. Illustration of pT1 and pT2 showing tumor without and with vascular/lymphatic invasion.

FIG. 35.2. pT2 Tumor extending through the tunica albuginea with involvement of the tunica vaginalis.

FIG. 35.3. pT3 Tumor invades the spermatic cord.
be recorded, along with the number of lymph nodes involved by tumor. Extranodal soft tissue extension of disease should be noted, if present. It is important to examine carefully and liberally sample the specimen, including cystic, fibrotic, hemorrhagic, necrotic, and solid areas. Laterality does not affect the N classification. In post-treatment specimens, it may be difficult to distinguish individual lymph nodes. The definitions for Primary Tumor (T) for pT1, pT2, and pT3 are illustrated in Figures 35.1, 35.2, and 35.3.

DEFINITION OF TNM

Primary Tumor (T)
The extent of primary tumor is usually classified after radical orchietomy, and for this reason, a *pathologic* stage is assigned.

- **pT0**: No evidence of primary tumor (e.g., histologic scar in testis)
- **pT1**: Tumor limited to the testis and epididymis without vascular/lymphatic invasion; tumor may invade the tunica albuginea but not the tunica vaginalis
- **pT2**: Tumor limited to the testis and epididymis with vascular/lymphatic invasion, or tumor extending through the tunica albuginea with involvement of the tunica vaginalis
- **pT3**: Tumor invades the spermatic cord with or without vascular/lymphatic invasion
- **pT4**: Tumor invades the scrotum with or without vascular/lymphatic invasion

Note: Except for pTis and pT4, extent of primary tumor is classified by radical orchietomy. TX may be used for other categories in the absence of radical orchietomy.

Regional Lymph Nodes (N)

Clinical

- **NX**: Regional lymph nodes cannot be assessed
- **N0**: No regional lymph node metastasis
- **N1**: Metastasis with a lymph node mass 2 cm or less in greatest dimension; or multiple lymph nodes, none more than 2 cm in greatest dimension
- **N2**: Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or multiple lymph nodes, any one mass greater than 2 cm but not more than 5 cm in greatest dimension
- **N3**: Metastasis with a lymph node mass more than 5 cm in greatest dimension

Pathologic (pN)

- **pNX**: Regional lymph nodes cannot be assessed
- **pN0**: No regional lymph node metastasis
- **pN1**: Metastasis with a lymph node mass 2 cm or less in greatest dimension and less than or equal to 5 nodes positive, none more than 2 cm in greatest dimension
- **pN2**: Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm; or evidence of extranodal extension of tumor
- **pN3**: Metastasis with a lymph node mass more than 5 cm in greatest dimension

Distant Metastasis (M)

- **MX**: Distant metastasis cannot be assessed
- **M0**: No distant metastasis
- **M1**: Distant metastasis
- **M1a**: Non-regional nodal or pulmonary metastasis
- **M1b**: Distant metastasis other than to non-regional lymph nodes and lungs

Serum Tumor Markers (S)

- **SX**: Marker studies not available or not performed
- **S0**: Marker study levels within normal limits
- **S1**: LDH < 1.5 × N* AND hCG (mIU/mL) < 5000 AND AFP (ng/mL) < 1000
- **S2**: LDH 1.5–10 × N OR hCG (mIU/mL) 5000–50,000 OR AFP (ng/mL) 1000–10,000
- **S3**: LDH > 10 × N OR hCG (mIU/mL) > 50,000 OR AFP (ng/mL) > 10,000

*N indicates the upper limit of normal for the LDH assay.

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>pTis</th>
<th>pN</th>
<th>M</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>N0</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>I</td>
<td>pT1</td>
<td>N0</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td>IA</td>
<td>pT1</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>IB</td>
<td>pT2</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>pT3</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>pT4</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td>IS</td>
<td>Any</td>
<td>N0</td>
<td>M0</td>
<td>S1–3</td>
</tr>
<tr>
<td>II</td>
<td>Any</td>
<td>N1–3</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td>IIA</td>
<td>Any</td>
<td>N1</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N1</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N2</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td>IIB</td>
<td>Any</td>
<td>N2</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N3</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N3</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td>IIIC</td>
<td>Any</td>
<td>N3</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N4</td>
<td>M0</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N1–3</td>
<td>M0</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N1–3</td>
<td>M0</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N1</td>
<td>M0</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>N1</td>
<td>M0</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td>Any</td>
<td>M0</td>
<td>S0</td>
<td>S</td>
</tr>
</tbody>
</table>

American Joint Committee on Cancer • 2002
HISTOPATHOLOGIC TYPE

Following the guidelines of the World Health Organization Histological Classification of Tumors, germ cell tumors may be either seminomatous or non-seminomatous. Seminomas may be classic type or with syncytiotrophoblasts. A distinct variant is spermatocytic seminoma, which is characteristically found in older patients, is often associated with intratumoral calcification, and tends not to metastasize. Non-seminomatous germ cell tumors may be pure (embryonal carcinoma, yolk sac tumor, teratoma, choriocarcinoma) or mixed. Mixtures of these types (including seminoma) should be noted, starting with the most prevalent component and ending with the least represented. Similarly, gonadal stromal tumors should be classified according to the World Health Organization Histological Classification of Tumours.

BIBLIOGRAPHY

HISTOLOGIES—TESTIS

8590/1 Sex cord–gonadal stromal tumor, NOS
8592/1 Sex cord–gonadal stromal tumor, mixed forms
8620/1 Granulosa cell tumor, adult type
8640/3 Sertoli cell carcinoma
8650/1 Leydig cell tumor, NOS
9061/3 Seminoma, NOS
9063/3 Spematocytic seminoma
9064/2 Intratubular malignant germ cells
9065/3 Germ cell tumor, non-seminomatous
9070/3 Embryonal carcinoma, NOS
9071/3 Yolk sac tumor
9081/3 Teratocarcinoma
9085/3 Mixed germ cell tumor
9100/3 Choriocarcinoma, NOS
9101/3 Choriocarcinoma combined with other germ cell elements
TESTIS

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen

Histopathologic Type

Tumor Size

Laterality:
- [] Bilateral
- [] Left
- [] Right

DEFINITIONS

<table>
<thead>
<tr>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] pTX</td>
<td>Primary tumor cannot be assessed (if no radical orchietomy has been performed. TX is used)</td>
</tr>
<tr>
<td>[] pT0</td>
<td>No evidence of primary tumor (e.g., histologic scar in testis)</td>
</tr>
<tr>
<td>[] pT1</td>
<td>Tumor limited to the testis and epididymis without vascular/lymphatic invasion; tumor may invade into the tunica albuginea but not the tunica vaginalis</td>
</tr>
<tr>
<td>[] pT2</td>
<td>Tumor limited to the testis and epididymis with vascular/lymphatic invasion, or tumor extending through the tunica albuginea with involvement of the tunica vaginalis</td>
</tr>
<tr>
<td>[] pT3</td>
<td>Tumor invades the spermatic cord with or without vascular/lymphatic invasion</td>
</tr>
<tr>
<td>[] pT4</td>
<td>Tumor invades the scrotum with or without vascular/lymphatic invasion</td>
</tr>
</tbody>
</table>

Clinical Primary Tumor (T)

- Tumor stage is generally determined after orchietomy at which a pathologic stage is assigned.

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Pathologic</th>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] pNX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>[] pN0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>[] pN1</td>
<td>Metastasis with a lymph node mass 2 cm or less in greatest dimension and less than or equal to 5 nodes positive, none more than 2 cm in greatest dimension</td>
</tr>
<tr>
<td>[] pN2</td>
<td>Metastasis with a lymph node mass more than 2 cm but not more than 5 cm in greatest dimension; or more than 5 nodes positive, none more than 5 cm, or evidence of extranodal extension of tumor</td>
</tr>
<tr>
<td>[] pN3</td>
<td>Metastasis with a lymph node mass more than 5 cm in greatest dimension</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

- [] MX: Distant metastasis cannot be assessed
- [] M0: No distant metastasis
- [] M1: Distant metastasis
- [] M1a: Non-regional nodal or pulmonary metastasis
- [] M1b: Distant metastasis other than to non-regional lymph nodes and lungs

- Biopsy of metastatic site performed
- Source of pathologic metastatic specimen

Serum Tumor Markers (S) (N indicates the upper limit of normal for the LDH assay)

<table>
<thead>
<tr>
<th>Pathologic</th>
<th>Serum Tumor Markers (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[] SX</td>
<td>Marker studies not available or not performed</td>
</tr>
<tr>
<td>[] S0</td>
<td>Marker study levels within normal limits</td>
</tr>
<tr>
<td>[] SI</td>
<td>LDH < 1.5 x N AND hCG (mIU/ml) < 5000 AND AFP (ng/ml) < 1000</td>
</tr>
<tr>
<td>[] S2</td>
<td>LDH 1.5-10 x N OR hCG (mIU/ml) 5000-50,000 OR AFP (ng/ml) 1000-10,000</td>
</tr>
<tr>
<td>[] S3</td>
<td>LDH > 10 x N OR hCG (mIU/ml) > 50,000 OR AFP (ng/ml) > 10,000</td>
</tr>
</tbody>
</table>

(continued on reverse side)
Stage Grouping

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Stage Grouping</th>
<th>0</th>
<th>pTis</th>
<th>N0</th>
<th>M0</th>
<th>S0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>I</td>
<td>pT1-4</td>
<td>N0</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IA</td>
<td>pT1</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IB</td>
<td>pT2</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pT3</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pT4</td>
<td>N0</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IS</td>
<td>Any pT/Tx</td>
<td>N0</td>
<td>M0</td>
<td>S1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>II</td>
<td>Any pT/Tx</td>
<td>N1-3</td>
<td>M0</td>
<td>SX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IA</td>
<td>Any pT/Tx</td>
<td>N1</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IB</td>
<td>Any pT/Tx</td>
<td>N1</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>N2</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>N1</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>N2</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>N3</td>
<td>M0</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>N3</td>
<td>M0</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>Any N</td>
<td>M1</td>
<td>SX</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>Any N</td>
<td>M1a</td>
<td>S0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>Any N</td>
<td>M1a</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>N1-3</td>
<td>M0</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>Any N</td>
<td>M1a</td>
<td>S2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>N1-3</td>
<td>M0</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>Any N</td>
<td>M1a</td>
<td>S3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Any pT/Tx</td>
<td>Any N</td>
<td>M1b</td>
<td>Any S</td>
</tr>
</tbody>
</table>

Residual Tumor (R)

- **RX**: Presence of residual tumor cannot be assessed
- **R0**: No residual tumor
- **R1**: Microscopic residual tumor
- **R2**: Macroscopic residual tumor

Additional Descriptors

- **m** suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y** prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- **r** prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rT1NM.
- **a** prefix designates the stage determined at autopsy: aT1NM.

Prognostic Indicators (if applicable)

Notes

- **L**: Lymphatic vessel invasion
 - **LX**: Lymphatic vessel invasion cannot be assessed
 - **L0**: No lymphatic vessel invasion
 - **L1**: Lymphatic vessel invasion
- **V**: Venous Invasion
 - **VX**: Venous invasion cannot be assessed
 - **V0**: No venous invasion
 - **V1**: Microscopic venous invasion
 - **V2**: Macroscopic venous invasion

ILLUSTRATION

Indicate on diagram primary tumor and regional nodes involved.

Physician's Signature ___________________________ **Date** ___________________________
Kidney
(Sarcomas and adenomas are not included.)

C64.9 Kidney, NOS

SUMMARY OF CHANGES
- T1 lesions have been divided into T1a and T1b.
- T1a is defined as tumors 4 cm or less in greatest dimension, limited to the kidney.
- T1b is defined as tumors greater than 4 cm but not more than 7 cm in greatest dimension, limited to the kidney.

INTRODUCTION
Cancers of the kidney are relatively rare, accounting for less than 3% of all malignancies. Nearly all malignant tumors are carcinomas arising from the renal tubular epithelium or, less frequently, from the renal pelvis (see Chapter 37). These tumors are more common in males. Pain and hematuria are usually the presenting features, but a majority of kidney tumors are now being detected incidentally in asymptomatic individuals. These carcinomas have a tendency to extend into the renal vein and even into the vena cava. Staging depends on the size of the primary tumor, invasion of the adjacent structures, and vascular extension.

Since publication of the Fifth Edition of the AJCC Cancer Staging Manual, the evidence has become compelling that the T1 category should be subdivided into stages T1a and T1b, the former being tumors of 4 cm or less and the latter being tumors of 4–7 cm. The rationale is twofold: (1) the recurrence and survival difference between the two and (2) the current practice of applying partial nephrectomy for solitary tumors 4 cm or less in diameter. In the case of partial nephrectomy for tumors <4 cm in diameter, evidence suggests that survival outcomes are equivalent to outcomes with radical nephrectomy (Lee CT et al. 2000). In a group of 485 patients undergoing nephron-sparing surgery for renal cell carcinoma and with a mean post-operative follow-up of 47 months, the authors segregated patients into four groups based on tumor size: 1—less than 2.5 cm; 2—2.5 to 4.0 cm; 3—4 to 7 cm; 4—more than 7 cm (Hafez KS et al. 1999). The authors found no difference in survival between groups 1 and 2, but survival was significantly greater in groups 1 and 2 than in both groups 3 and 4. Similar findings were reported in a second series of 394 patients (Lerner SE et al. 1996).

ANATOMY
Primary Site. Encased by a fibrous capsule and surrounded by perirenal fat, the kidney consists of the cortex (glomeruli, convoluted tubules) and the medulla (Henle’s loops, pyramids of converging tubules). Each papilla opens into the minor calices; these in turn unite in the major calices and drain into the renal pelvis. At the hilus are the pelvis, ureter, and renal artery and vein. Gerota’s fascia overlies the psoas and quadratus lumborum.

Regional Lymph Nodes. The regional lymph nodes are:
- Renal hilar
- Paracaval
- Aortic (para-aortic, periaortic, lateral aortic)
- Retroperitoneal, NOS

Metastatic Sites. Common metastatic sites include bone, liver, lung, brain, and distant lymph nodes.

RULES FOR CLASSIFICATION
The classification applies only to the renal cell carcinomas. Adenoma is excluded. There should be histologic confirmation of the disease. Refer to the list of histopathologic types below.
Clinical Staging. Clinical examination, abdominal computed tomography scanning, and appropriate imaging techniques are required for assessment of the primary tumor and its extensions, both local and distant. Evaluation for distant metastases should be done by laboratory biochemical studies, chest X-rays, and, if clinically indicated, isotopic studies.

Pathologic Staging. Histologic examination and confirmation of extent are recommended. Resection of the primary tumor, kidney, Gerota’s fascia, perinephric fat, renal vein, and appropriate lymph nodes is recommended. Partial nephrectomy seems to be an acceptable treatment for T1a tumors with outcomes comparable to those with radical nephrectomy for this tumor stage. Laterality does not affect the N classification.

Specimen Handling. It is recommended that the pathologic specimen be processed in such a fashion as to allow full pathologic assessment. Perinephric fat should be left intact and sectioned in such a manner so as to evaluate invasion of this structure. For specimens from partial nephrectomy, margins must be evaluated from at least two sections and should include the renal sinus for central tumors. For patients in whom an assessment of multiple tumors is required, thin sections will be needed (0.5–1.0 cm).

Figures 36.1 and 36.2 illustrate the definition of T1 and T2.

DEFINITION OF TNM

Primary Tumor (T)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor 7 cm or less in greatest dimension, limited to the kidney</td>
</tr>
<tr>
<td>T1a</td>
<td>Tumor 4 cm or less in greatest dimension, limited to the kidney</td>
</tr>
<tr>
<td>T1b</td>
<td>Tumor more than 4 cm but not more than 7 cm in greatest dimension, limited to the kidney</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor more than 7 cm in greatest dimension, limited to the kidney</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor extends into major veins or invades adrenal gland or perinephric tissues but not beyond Gerota’s fascia</td>
</tr>
<tr>
<td>T3a</td>
<td>Tumor directly invades adrenal gland or perirenal and/or renal sinus fat but not beyond Gerota’s fascia</td>
</tr>
<tr>
<td>T3b</td>
<td>Tumor grossly extends into the renal vein or its segmental (muscle-containing) branches, or vena cava below the diaphragm</td>
</tr>
<tr>
<td>T3c</td>
<td>Tumor grossly extends into vena cava above diaphragm or invades the wall of the vena cava</td>
</tr>
<tr>
<td>T4</td>
<td>Tumor invades beyond Gerota’s fascia</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)*

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
<td>No regional lymph node metastases</td>
</tr>
<tr>
<td>N1</td>
<td>Metastases in a single regional lymph node</td>
</tr>
<tr>
<td>N2</td>
<td>Metastasis in more than one regional lymph node</td>
</tr>
</tbody>
</table>

*Laterality does not affect the N classification.

Note: If a lymph node dissection is performed, then pathologic evaluation would ordinarily include at least eight nodes.

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
<td>Distant metastasis</td>
</tr>
</tbody>
</table>
STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>II</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>T1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>T3a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>T3b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>T3c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>T4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

The predominant cancer is adenocarcinoma; subtypes are clear cell and granular cell carcinoma. The use of the following grading system is recommended when feasible. Sarcomas and adenomas are not included. The histopathologic types are:

Conventional (clear cell) renal carcinoma
Papillary renal cell carcinoma
Chromophobe renal carcinoma
Collecting duct carcinoma

HISTOLOGIC GRADE (G)

GX Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3–4 Poorly differentiated or undifferentiated

BIBLIOGRAPHY

HISTOLOGIES—KIDNEY

8032/3 Spindle cell carcinoma, NOS
8041/3 Small cell carcinoma, NOS
8140/3 Adenocarcinoma, NOS
8240/3 Carcinoid tumor, NOS
8260/3 Papillary adenocarcinoma, NOS
8290/3 Oxyphilic adenoma
8290/3 Oxyphilic adenocarcinoma
8310/3 Clear cell adenocarcinoma, NOS
8312/3 Renal cell carcinoma, NOS
8317/3 Renal cell carcinoma, chromophobe type
8318/3 Renal cell carcinoma, sarcomatoid
8319/3 Collecting duct carcinoma
8320/3 Granular cell carcinoma
8960/3 Nephroblastoma, NOS
8963/3 Malignant rhabdoid tumor
8966/2 Renomedullary interstitial cell tumor

American Joint Committee on Cancer • 2002
KIDNEY

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen ___________________________ Histopathologic Type ___________________________

Tumor Size ___________________________ Laterality: □ Bilateral □ Left □ Right

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>TX</td>
</tr>
<tr>
<td>□</td>
<td>T0</td>
</tr>
<tr>
<td>□</td>
<td>T1</td>
</tr>
<tr>
<td>□</td>
<td>T1a</td>
</tr>
<tr>
<td>□</td>
<td>T1b</td>
</tr>
<tr>
<td>□</td>
<td>T2</td>
</tr>
<tr>
<td>□</td>
<td>T3</td>
</tr>
<tr>
<td>□</td>
<td>T3a</td>
</tr>
<tr>
<td>□</td>
<td>T3b</td>
</tr>
<tr>
<td>□</td>
<td>T3c</td>
</tr>
<tr>
<td>□</td>
<td>T4</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

NX	Regional lymph nodes cannot be assessed
□ □	N0 Lunar lymph node metastases
□	N1 Metastases in a single regional lymph node
□	N2 Metastasis in more than one regional lymph node

Distant Metastasis (M)

MX	Distant metastasis cannot be assessed
□ □	M0 No distant metastasis
□	M1 Distant metastasis

Stage Grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3a</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3b</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3c</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

(continued on reverse side)
Histologic Grade (G)
- GX Grade cannot be assessed
- G1 Well differentiated
- G2 Moderately differentiated
- G3–4 Poorly differentiated or undifferentiated

Residual Tumor (R)
- RX Presence of residual tumor cannot be assessed
- R0 No residual tumor
- R1 Microscopic residual tumor
- R2 Macroscopic residual tumor

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y”, “r”, and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.
- m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

ILLUSTRATION
This drawing is to be used with the checklist. Sketch in the urographic, angiographic, ultrasound, or CT extent of the tumor.

Physician’s Signature __________________________ Date __________________________
INTRODUCTION

Urothelial (transitional cell) carcinoma may occur at any site within the upper urinary collecting system from the renal calyx to the ureterovesical junction. The tumors occur most commonly in adults and are rare before 40 years of age. There is a two- to threefold increase in incidence in men compared with women. The lesions are often multiple and are more common in patients with a history of urothelial carcinoma of the bladder. A number of analgesics (such as phenacetin) have also been associated with this disease. Local staging depends on the depth of invasion. A common staging system is used regardless of tumor location within the upper urinary collecting system, except for category T3, which differs between the pelvis or calyceal system and the ureter.

ANATOMY

Primary Site. The renal pelvis and ureter form a single unit that is continuous with the collecting ducts of the renal pyramids and comprises the minor and major calyces, which are continuous with the renal pelvis. The ureteropelvic junction is variable in position and location but serves as a "landmark" that separates the renal pelvis and the ureter, which continues caudad and traverses the wall of the urinary bladder as the intramural ureter opening in the trigone of the bladder at the ureteral orifice. The renal pelvis and ureter are composed of the following layers: epithelium, subepithelial connective tissue, and muscularis, which is continuous with a connective tissue adventitial layer. It is in this outer layer that the major blood supply and lymphatics are found.

The intrarenal portion of the renal pelvis is surrounded by renal parenchyma; the extrarenal pelvis, by perihilar fat. The ureter courses through the retroperitoneum adjacent to the parietal peritoneum and rests on the retroperitoneal musculature above the pelvic vessels. As it crosses the vessels and enters the deep pelvis, the ureter is surrounded by pelvic fat until it traverses the bladder wall.

Regional Lymph Nodes. The regional lymph nodes for the renal pelvis are:

- Renal hilar
- Paracaval
- Aortic
- Retropitoneal, NOS

The regional lymph nodes for the ureter are:

- Renal hilar
- Iliac (common, internal [hypogastric], external)
- Paracaval
- Periureteral
- Pelvic, NOS

Any amount of regional lymph node metastasis is a poor prognostic finding, and outcome is minimally influenced by the number, size, or location of the regional nodes that are involved.

Metastatic Sites. Distant spread is most commonly to lung, bone, or liver.

RULES FOR CLASSIFICATION

Clinical Staging. Primary tumor assessment includes radiographic imaging, usually by intravenous and/or retrograde pyelography. Computerized tomography scanning can be used to assess regional nodes. Ureteroscopic visualization of the tumor is desirable, and tissue biopsy through the ureteroscope may be performed if feasible. Urine cytology may help determine tumor grade if tissue is not available. Staging of tumors of the renal pelvis and ureter is not influenced by the presence of any concomitant bladder tumors that may
be identified, although it may not be possible to identify the true source of the primary tumor in the presence of metastases if both upper- and lower-tract tumors are present. In that situation, the tumor of highest grade and/or stage is most likely to have contributed to the nodal or metastatic spread.

Pathologic Staging. Pathologic staging depends on histologic determination of the extent of invasion by the primary tumor. Treatment frequently requires resection of the entire kidney, ureter, and a cuff of bladder surrounding the ureteral orifice. Appropriate regional nodes may be sampled. A more conservative surgical resection may be performed, especially with distal ureteral tumors or in the presence of compromised renal function.

Endoscopic resection through a ureteroscope or a percutaneous approach may be used in some circumstances. Submitted tissue may be insufficient for accurate histologic examination and pathologic staging. Laser or electrocautery coagulation or vaporization of the tumor may be performed, especially if the visible appearance is consistent with a low-grade and low-stage tumor. Under these circumstances, there may be no material available for histologic review.

Figures 37.1 and 37.2 illustrate the Primary Tumor (T) definition for Ta, T1, T2, and T3.

DEFINITION OF TNM

Primary Tumor (T)
- TX Primary tumor cannot be assessed
- T0 No evidence of primary tumor
- Ta Papillary non-invasive carcinoma
- Tis Carcinoma in situ
- T1 Tumor invades subepithelial connective tissue
- T2 Tumor invades the muscularis
- T3 (For renal pelvis only) Tumor invades beyond muscularis into peripelvic fat or the renal parenchyma
- T4 (For ureter only) Tumor invades beyond muscularis into periureteric fat

Regional Lymph Nodes (N)
- NX Regional lymph nodes cannot be assessed
- N0 No regional lymph node metastasis
- N1 Metastasis in a single lymph node, 2 cm or less in greatest dimension
- N2 Metastasis in a single lymph node, more than 2 cm but not more than 5 cm in greatest dimension; or multiple lymph nodes, none more than 5 cm in greatest dimension
- N3 Metastasis in a lymph node, more than 5 cm in greatest dimension

Note: Laterality does not affect the N classification

Distant Metastasis (M)
- MX Distant metastasis cannot be assessed
- M0 No distant metastasis
- M1 Distant metastasis

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>T</th>
<th>N</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>Ta</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>0is</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Any</td>
<td>T</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Any</td>
<td>T</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>Any</td>
<td>T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td>Any</td>
<td>T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

The histologic types are
- Urothelial (transitional cell) carcinoma
- Squamous cell carcinoma
- Epidermoid carcinoma
- Adenocarcinoma
HISTOLOGIC GRADE

GX Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3–4 Poorly differentiated or undifferentiated

BIBLIOGRAPHY

HISTOLOGIES—RENAL PELVIS AND URETER

8010/2 Carcinoma in situ, NOS
8010/3 Carcinoma, NOS
8070/2 Squamous cell carcinoma in situ
8070/3 Squamous cell carcinoma, NOS
8120/2 Transitional cell carcinoma in situ
8120/3 Transitional cell carcinoma, NOS
8130/2 Papillary transitional cell carcinoma, non-invasive
8130/3 Papillary transitional cell carcinoma
8140/3 Adenocarcinoma, NOS
Definitions

Clinical
- **TX**: Primary tumor cannot be assessed
- **T0**: No evidence of primary tumor
- **Ta**: Papillary non-invasive carcinoma
- **Tis**: Carcinoma in situ
- **T1**: Tumor invades subepithelial connective tissue
- **T2**: Tumor invades the muscularis
- **T3**: (For renal pelvis only) Tumor invades beyond muscularis into peripelvic fat or the renal parenchyma
- **T4**: Tumor invades adjacent organs, or through the kidney into the perinephric fat

Regional Lymph Nodes (N)
- **NX**: Regional lymph nodes cannot be assessed
- **N0**: No regional lymph node metastasis
- **N1**: Metastasis in a single lymph node, 2 cm or less in greatest dimension
- **N2**: Metastasis in a single lymph node, more than 2 cm but not more than 5 cm in greatest dimension, or multiple lymph nodes, none more than 5 cm in greatest dimension
- **N3**: Metastasis in a lymph node, more than 5 cm in greatest dimension

Distant Metastasis (M)
- **MX**: Distant metastasis cannot be assessed
- **M0**: No distant metastasis
- **M1**: Distant metastasis

Biopsy of metastatic site performed: [] Y [] N
Source of pathologic metastatic specimen: ____________________________

Stage Grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>T Category</th>
<th>N Category</th>
<th>M Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Ta</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>0is</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I1</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I11</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Any</td>
<td>N1</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>N2</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>N3</td>
<td>M0</td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>Any N</td>
<td>M1</td>
<td></td>
</tr>
</tbody>
</table>

(continued on reverse side)
Histologic Grade (G)

- GX Grade cannot be assessed
- G1 Well differentiated
- G2 Moderately differentiated
- G3–4 Poorly differentiated or undifferentiated

Residual Tumor (R)

- RX Presence of residual tumor cannot be assessed
- R0 No residual tumor
- R1 Microscopic residual tumor
- R2 Macroscopic residual tumor

Additional Descriptors

For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y", "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
- a prefix designates the stage determined at autopsy: aTNM.

Prognostic indicators (if applicable)

Notes

Additional Descriptors

- Lymphatic Vessel Invasion (L)
 - L0 No lymphatic vessel invasion
 - L1 Lymphatic vessel invasion
- Venous Invasion (V)
 - V0 No venous invasion
 - V1 Microscopic venous invasion
 - V2 Macroscopic venous invasion
INTRODUCTION

Bladder cancer is one of the most common malignancies in Western society, and it occurs more commonly in males. Predisposing factors include smoking, exposure to chemicals such as phenacetin and dyes, and schistosomiasis. It has also been suggested that the incidence of this disease correlates inversely with fluid intake. Hematuria is the most common presenting feature. Bladder cancer can present as a low-grade papillary lesion, as an in situ lesion that can occupy large areas of the mucosal surface, or as an infiltrative cancer that rapidly extends through the bladder wall and can thereafter metastasize. The papillary and in situ lesions may be associated with a malignant course, with sudden invasion of the bladder wall. The most common histologic variant is urothelial (transitional cell) carcinoma, although this may exhibit features of glandular or squamous differentiation. In less than 10% of cases, pure adenocarcinoma or squamous carcinoma of the bladder may occur, and less frequently, sarcoma, lymphoma, small cell anaplastic carcinoma, pheochromocytoma, or choriocarcinoma. Squamous carcinoma is associated with schistosomiasis and smoking.

ANATOMY

Primary Site. The urinary bladder consists of three layers: the epithelium and the subepithelial connective tissue, the muscularis, and the perivesical fat (peritoneum covering the superior surface and upper part). In the male, the bladder adjoins the rectum and seminal vesicle posteriorly, the prostate inferiorly, and the pubis and peritoneum anteriorly. In the female, the vagina is located posteriorly and the uterus superiorly. The bladder is located extraperitoneally.

Regional Lymph Nodes. The regional lymph nodes are the nodes of the true pelvis, which essentially are the pelvic nodes below the bifurcation of the common iliac arteries. The significance of regional lymph node metastasis in staging bladder cancer lies in the number and size, not in whether metastasis is unilateral or contralateral. One of the major prognostic determinants of ultimate cure is whether the tumor is confined to the bladder, and a major adverse prognostic feature is the presence of any lymph nodal metastases.

Regional nodes include:

- Hypogastric
- Obturator
- Iliac (internal, external, NOS)
- Perivesical
- Pelvic, NOS
- Sacral (lateral, sacral promontory [Gerota’s])
- Presacral

The common iliac nodes are considered sites of distant metastasis and should be coded as M1.

Metastatic Sites. Distant spread is most commonly to lymph nodes, lung, bone, and liver.

RULES FOR CLASSIFICATION

Clinical Staging. Primary tumor assessment includes bimanual examination under anesthesia before and after endoscopic surgery (biopsy or transurethral resection) and histologic verification of the presence or absence of tumor when indicated. Bimanual examination following endoscopic surgery is an indicator of clinical stage. The finding of bladder
wall thickening, a mobile mass, or a fixed mass suggests the presence of T3a, T3b, and T4b disease, respectively. The suffix “m” is added to denote multiple tumors. The suffix “is” is added to any T to indicate associated carcinoma in situ. Appropriate imaging techniques for lymph node evaluation should be used. When indicated, evaluation for distant metastases includes imaging of the chest, biochemical studies, and isotopic studies to detect common metastatic sites. Computed tomography or other modalities may subsequently be used to supply information concerning minimal requirements for staging. Evidence suggests that MRI may be another useful modality for staging locally advanced bladder cancer. As yet, the role of positron emission tomography (PET) scanning in the staging and management of bladder cancer has not been defined. The primary tumor may be superficial or invasive and can be partially or totally resected with sufficient tissue from the tumor base for evaluation of full depth of tumor invasion. Visually adjacent cystoscopically normal mucosa should be considered for biopsy, and in most cases, multiple biopsies should be taken from other sites to rule out a field effect; urinary cytology and pyelography are important. It should be recalled that bladder cancer may occur in association with malignancies of the ureters, renal pelvis, or urethra. The definitions for Primary Tumor (T) are illustrated in Figure 38.1.

Pathologic Staging. Microscopic examination and confirmation of extent are required. Total cystectomy and lymph node dissection generally are required for this staging. Laterality does not affect the N classification.

DEFINITION OF TNM

Primary Tumor (T)
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
Ta Non-invasive papillary carcinoma
Tis Carcinoma in situ: flat tumor
T1 Tumor invades subepithelial connective tissue
T2 Tumor invades muscle
pT1a Tumor invades superficial muscle (inner half)
pT1b Tumor invades deep muscle (outer half)
T3 Tumor invades perivesical tissue
pT3a microscopically
pT3b macroscopically (extravesical mass)
T4 Tumor invades any of the following: prostate, uterus, vagina, pelvic wall, abdominal wall
T4a Tumor invades prostate, uterus, vagina
T4b Tumor invades pelvic wall, abdominal wall

Regional Lymph Nodes (N)
Regional lymph nodes are those within the true pelvis; all others are distant lymph nodes.
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis

336
Metastasis in a single lymph node, 2 cm or less in greatest dimension

Metastasis in a single lymph node, more than 2 cm but not more than 5 cm in greatest dimension; or multiple lymph nodes, none more than 5 cm in greatest dimension

Metastasis in a lymph node, more than 5 cm in greatest dimension

Stage 0a Ta N0 M0

Stage 0is Tis N0 M0

Stage I T1 N0 M0

Stage II T2a N0 M0

Stage III T3a N0 M0

T3b N0 M0

T4a N0 M0

Stage IV T4b N0 M0

Any T N1 M0

Any T N2 M0

Any T N3 M0

Any T Any N M1

PROGNOSTIC FACTORS

For primary tumors, the major established prognostic factors are grade and stage, although other factors identified in some series include hydronephrosis, anemia, size, expression of blood group substances, expression of epidermal growth factor receptor, and mutation of P53 and up-regulation of Rb and other oncogene expression. For metastatic disease, adverse prognostic factors include poor performance status, visceral metastases, and abnormal liver function tests. The expression, up-regulation, or mutation of known oncogenes, such as P53, Rb, P21, and others, are under intense investigation in order to define which are the most important prognostic indices. To date, no consensus has been achieved, and conflicting data regarding the prognostic significance of P53 have been published. However, it does seem clear that two distinct molecular events are associated with the genesis of bladder cancer. Loss of heterozygosity of chromosome 9 is associated with the genesis of superficial bladder cancer, whereas loss of heterozygosity of chromosome 17, with mutation of the P53 suppressor gene, appears to be associated with the evolution of invasive disease and/or metastatic disease. Ploidy has been investigated as a prognostic factor. In superficial disease, an aneuploid DNA content is associated with shorter disease-free survival and with an increased chance of progression to a higher stage; however, in invasive and metastatic disease, the majority of cases are aneuploid, thus reducing the role of aneuploid DNA content as a discriminant of outcome.

BIBLIOGRAPHY

Wishnow KI, Levinson AK, Johnson DE: Stage B (P2/Pa/N0) transitional cell carcinoma of the bladder highly curable by radical cystectomy. Urology 39:12–16, 1992

HISTOLOGIES—BLADDER

8010/2 Carcinoma in situ, NOS

8010/3 Carcinoma, NOS

8020/3 Undifferentiated carcinoma, NOS

8051/3 Verrucous carcinoma, NOS

8070/2 Squamous cell carcinoma in situ, NOS

8070/3 Squamous cell carcinoma

8120/2 Transitional cell carcinoma in situ

8120/3 Transitional cell carcinoma, NOS

8130/2 Papillary transitional cell carcinoma, non-invasive

8130/3 Papillary transitional cell carcinoma

8131/3 Transitional cell carcinoma, micropapillary

8140/2 Adenocarcinoma in situ, NOS

8140/3 Adenocarcinoma, NOS

8255/3 Adenocarcinoma with mixed subtypes
Urinary Bladder

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Identification</th>
</tr>
</thead>
</table>

Type of Specimen

Tumor Size

Histopathologic Type

Definitions

Primary Tumor (T)
- **TX**: Primary tumor cannot be assessed
- **T0**: No evidence of primary tumor
- **Ta**: Non-invasive papillary carcinoma
- **Tis**: Carcinoma *in situ*: "flat tumor"
- **T1**: Tumor invades subepithelial connective tissue
- **T2**: Tumor invades muscle
- **pT2a**: Tumor invades superficial muscle (inner half)
- **pT2b**: Tumor invades deep muscle (outer half)
- **T3**: Tumor invades perivesical tissue
- **pT3a**: microscopically
- **pT3b**: macroscopically (extravesical mass)
- **T4**: Tumor invades any of the following: prostate, uterus, vagina; pelvic wall, abdominal wall
- **T4a**: Tumor invades prostate, uterus, vagina
- **T4b**: Tumor invades pelvic wall, abdominal wall

Regional Lymph Nodes (N)
- **NX**: Regional lymph nodes cannot be assessed
- **N0**: No regional lymph node metastasis
- **N1**: Metastasis in a single lymph node, 2 cm or less in greatest dimension
- **N2**: Metastasis in a single lymph node, more than 2 cm but not more than 5 cm in greatest dimension; or multiple lymph nodes, none more than 5 cm in greatest dimension
- **N3**: Metastasis in a lymph node, more than 5 cm in greatest dimension

Distant Metastasis (M)
- **MX**: Distant metastasis cannot be assessed
- **M0**: No distant metastasis
- **M1**: Distant metastasis
 - Biopsy of metastatic site performed...

Stage Grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>T Classification</th>
<th>N Classification</th>
<th>M Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>Ta</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>0is</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>II</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>III</td>
<td>T3a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T3b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IV</td>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N3</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>Any N</td>
<td>Any</td>
<td>Any M</td>
</tr>
</tbody>
</table>

(continued on reverse side)
URINARY BLADDER

Histologic Grade (G)
- GX Grade cannot be assessed
- G1 Well differentiated
- G2 Moderately differentiated
- G3-4 Poorly differentiated or undifferentiated

Residual Tumor (R)
- RX Presence of residual tumor cannot be assessed
- R0 No residual tumor
- R1 Microscopic residual tumor
- R2 Macroscopic residual tumor

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y”, “r”, and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.
- m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.

Notes

Additional Descriptors
- Lymphatic Vessel Invasion (L)
 - LX Lymphatic vessel invasion cannot be assessed
 - L0 No lymphatic vessel invasion
 - L1 Lymphatic vessel invasion
- Venous Invasion (V)
 - VX Venous invasion cannot be assessed
 - V0 No venous invasion
 - V1 Microscopic venous invasion
 - V2 Macroscopic venous invasion

Physician’s Signature: ____________________________ Date: ____________________________
INTRODUCTION

Cancer of the urethra is a rare neoplasia that is found in both sexes but more common in females. The cancer may be associated in males with chronic stricture disease and in females with urethral diverticula. Tumors of the urethra may be of primary origin from the urethral epithelium or ducts, or they may be associated with multifocal urethelial neoplasia. Histologically, these tumors may represent the spectrum of epithelial neoplasms, including squamous, adenothelial, or urothelial (transitional cell) carcinoma. Prostatic urethral neoplasms arising from the prostatic urethral epithelium or from the periurethral portion of the prostatic ducts are considered urethral neoplasms as distinct from those arising elsewhere in the prostate (see Chapter 34).

ANATOMY

Primary Site. The male urethra consists of mucosa, submucosal stroma, and the surrounding corpus spongiosum. Histologically, the meatal and parameatal urethra are lined with squamous epithelium; the penile and bulbomembranous urethra with pseudostratified or stratified columnar epithelium, and the prostatic urethra with transitional epithelium. There are scattered islands of stratified squamous epithelium and glands of Littré liberally situated throughout the entire urethra distal to the prostate portion.

The epithelium of the female urethra is supported on subepithelial connective tissue. The periurethral glands of Skene are concentrated near the meatus but extend along the entire urethra. The urethra is surrounded by a longitudinal layer of smooth muscle continuous with the bladder. The urethra is contiguous to the vaginal wall. The distal two-thirds of the urethra is lined with squamous epithelium, the proximal one-third with transitional epithelium. The periurethral glands are lined with pseudostratified and stratified columnar epithelium.

Regional Lymph Nodes. The regional lymph nodes are:

- Inguinal (superficial or deep)
- Iliac (common, internal [hypogastric], obturator, external)
- Presacral
- Sacral, NOS
- Pelvic, NOS

The significance of regional lymph node metastasis in staging urethral cancer lies in the number and size, not in whether unilateral or bilateral.

Metastatic Sites. Distant spread is most commonly to lung, liver, or bone.

RULES FOR CLASSIFICATION

Clinical Staging. Radiographic imaging, cystourethroscope, palpation, and biopsy or cytology of the tumor prior to definitive treatment are desirable. The site of origin should be confirmed to exclude metastatic disease.

Pathologic Staging. The assignment of stage for non-prostatic urethral tumors is based on depth of invasion. Prostatic urethral tumor may arise from the prostatic epithelium or from the distal portions of the prostatic ducts and will be classified as prostatic urethral neoplasms. Other prostatic malignancies will be classified under prostate.

Figures 39.1 and 39.2 illustrate Primary Tumor (T) definitions for urethral malignancies and urothelial (transitional cell) carcinoma of the prostate.
DEFINITION OF TNM

Primary Tumor (T) (male and female)

- **TX** Primary tumor cannot be assessed
- **T0** No evidence of primary tumor
- **Ta** Non-invasive papillary, polypoid, or verrucous carcinoma
- **Tis** Carcinoma in situ
- **T1** Tumor invades subepithelial connective tissue
- **T2** Tumor invades any of the following: corpus spongiosum, prostate, periurethral muscle
- **T3** Tumor invades any of the following: corpus cavernosum, beyond prostatic capsule, anterior vagina, bladder neck
- **T4** Tumor invades other adjacent organs

Urothelial (Transitional Cell) Carcinoma of the Prostate

- **Tis pd** Carcinoma in situ, involvement of the prostatic urethra
- **T0 pd** Carcinoma in situ, involvement of the prostatic ducts
- **T1** Tumor invades subepithelial connective tissue
- **T2** Tumor invades any of the following: prostatic stroma, corpus spongiosum, periurethral muscle
- **T3** Tumor invades any of the following: corpus cavernosum, beyond prostatic capsule, bladder neck (extraprostatic extension)
- **T4** Tumor invades other adjacent organs (invasion of the bladder)

Regional Lymph Nodes (N)

- **NX** Regional lymph nodes cannot be assessed
- **N0** No regional lymph node metastasis
- **N1** Metastasis in a single lymph node 2 cm or less in greatest dimension
- **N2** Metastasis in a single node more than 2 cm in greatest dimension, or in multiple nodes

Distant Metastasis (M)

- **MX** Distant metastasis cannot be assessed
- **M0** No distant metastasis
- **M1** Distant metastasis

FIG. 39.1. Definition of Primary Tumor (T). 1—epithelium, 2—subepithelial connective tissue, 3—urethral muscle, 4—urogenital diaphragm.

FIG. 39.2. Definition of Primary Tumor (T) for urothelial (transitional cell) carcinoma of the prostate. 1—Epithelium, 2—subepithelial connective tissue, 3—prostatic stroma.
STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage</th>
<th>Code</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>Any T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0a</td>
<td>Ta</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0is</td>
<td>Tis</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>T1</td>
<td>N1</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>N1</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>N1</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N1</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>N2</td>
<td>M0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

The classification applies to urothelial (transitional cell), squamous, and glandular carcinomas of the urethra and to urothelial (transitional cell) carcinomas of the prostate and prostatic urethra. There should be histologic or cytologic confirmation of the disease.

HISTOLOGIC GRADE (G)

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GX</td>
<td>Grade cannot be assessed</td>
</tr>
<tr>
<td>G1</td>
<td>Well differentiated</td>
</tr>
<tr>
<td>G2</td>
<td>Moderately differentiated</td>
</tr>
<tr>
<td>G3–4</td>
<td>Poorly differentiated or undifferentiated</td>
</tr>
</tbody>
</table>

BIBLIOGRAPHY

HISTOLOGIES—URETHRA

8010/2 Carcinoma in situ, NOS
8010/3 Carcinoma, NOS
8070/2 Squamous cell carcinoma, in situ
8070/3 Squamous cell carcinoma, NOS
8120/2 Transitional cell carcinoma in situ
8120/3 Transitional cell carcinoma, NOS
8130/2 Papillary transitional cell carcinoma, non-invasive
8130/3 Papillary transitional cell carcinoma
8140/3 Adenocarcinoma, NOS
DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T) (male and female)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TX Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0 No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ta Non-invasive papillary, polypoid, or verrucous carcinoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tis Carcinoma in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 Tumor invades subepithelial connective tissue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2 Tumor invades any of the following: corpus spongiosum, prostate, periurethral muscle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3 Tumor invades any of the following: corpus cavernosum, beyond prostatic capsule, anterior vagina, bladder neck</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4 Tumor invades other adjacent organs</td>
</tr>
</tbody>
</table>

Urothelial (Transitional Cell) Carcinoma of the Prostate

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Carcinoma in situ, involvement of the prostatic urethra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tis pu Carcinoma in situ, involvement of the prostatic ducts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tis pd Carcinoma in situ, involvement of the prostatic ducts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 Tumor invades subepithelial connective tissue</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2 Tumor invades any of the following: prostatic stroma, corpus spongiosum, periurethral muscle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3 Tumor invades any of the following: corpus cavernosum, beyond prostatic capsule, bladder neck (extraprostatic extension)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4 Tumor invades other adjacent organs (invasion of the bladder)</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Regional lymph nodes cannot be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N0 No regional lymph node metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N1 Metastasis in a single lymph node 2 cm or less in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N2 Metastasis in a single node more than 2 cm in greatest dimension, or in multiple nodes</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Distant metastasis cannot be assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M0 No distant metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M1 Distant metastasis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biopsy of metastatic site performed Y N</td>
</tr>
</tbody>
</table>

Source of pathologic metastatic specimen ________________

(continued on reverse side)
Stage Grouping

<table>
<thead>
<tr>
<th>Stage</th>
<th>Substage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>I x</td>
<td>T1</td>
<td>N0</td>
</tr>
<tr>
<td>II</td>
<td>T2</td>
<td>N0</td>
</tr>
<tr>
<td>III</td>
<td>T3</td>
<td>N0</td>
</tr>
<tr>
<td>IV</td>
<td>T4</td>
<td>N0</td>
</tr>
<tr>
<td>T4</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>Any T</td>
<td>N2</td>
<td>M0</td>
</tr>
<tr>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Histologic Grade (G)
- □ GX: Grade cannot be assessed
- □ G1: Well differentiated
- □ G2: Moderately differentiated
- □ G3-4: Poorly differentiated or undifferentiated

Residual Tumor (R)
- □ RX: Presence of residual tumor cannot be assessed
- □ R0: No residual tumor
- □ R1: Microscopic residual tumor
- □ R2: Macroscopic residual tumor

Additional Descriptors

- Lymphatic Vessel Invasion (L)
 - L0: No lymphatic vessel invasion
 - L1: Lymphatic vessel invasion
- Venous Invasion (V)
 - V0: No venous invasion
 - V1: Microscopic venous invasion
 - V2: Macroscopic venous invasion

Prognostic Indicators (if applicable)

Physician's Signature

Date
PART X

Ophthalmic Sites
Carcinoma of the Eyelid

C44.1 Eyelid

INTRODUCTION

The tumors of the eyelid can be broadly categorized under epithelial tumors originating from the skin and conjunctival surfaces and glandular tumors originating from sebaceous, sweat, and apocrine glands as well as hair follicles. Lymphoproliferative and melanocytic malignancies and occasionally soft tissue sarcomas (Kaposi’s sarcoma, fibrous histiocytoma, leiomyosarcoma, etc.) are also encountered.

ANATOMY

Primary Site. The eyelid is covered externally by epidermis and internally by tarsal conjunctiva, which are continuous with the bulbar conjunctiva that covers the eyeball. Basal cell carcinoma and squamous cell carcinoma arise from the epidermal surface. Sebaceous carcinoma arises from the meibomian glands in the tarsus, the glands of Zeis at the lid margin, and the sebaceous glands of the caruncle. Other tumors arise from the skin appendages and mesenchymal tissues of the lid.

Regional Lymph Nodes. The eyelids contain a network of lymphatics that can be divided primarily into pre- and post-tarsalplexuses, which are anastomosed. The lymphatics of the lateral two-thirds of the upper eyelid and the lateral one-third of the lower eyelid drain into the preauricular nodes. The remaining lymphatics of the eyelids drain into the submandibular lymph nodes.

If performed for pN, histologic examination of the regional lymphadenectomy specimen would ordinarily include one or more lymph nodes.

Local Invasion. Malignancies of the eyelid may directly extend into the adjacent structures including the soft tissues of the orbit, the lacrimal gland, and the globe. Therefore, local tumor invasion (T4) should include extension to the bulbar conjunctiva, sclera and globe, soft tissues of the orbit, perineural space, bone/periosteum of the orbit, nasal cavity and paranasal sinuses, and central nervous system.

Metastatic Sites. Eyelid malignancies metastasize to distant sites, including cervical, axillary, and mediastinal lymph nodes, as well as to lungs, liver, and other viscera.

RULES FOR CLASSIFICATION

There should be histopathologic identification of the neoplasm to permit classification of the tumor into a given histopathologic type, such as basal cell carcinoma, sebaceous carcinoma, or Merkel cell tumor. In addition to criteria used for identification of the tumor, other histopathologic prognostic criteria, including the type and differentiation of the tumor, tumor presence or absence at surgical margins, perineural invasion, and vascular invasion, should be noted.

Any histopathologically unverified case should be categorized separately. Any unspecified case (malignant sarcoma, type unspecified) must be categorized separately.

Clinical Staging. The assessment of the malignancy should be based on inspection, palpation, biopsier, coscopic examination, ultrasonic biopsy, and, when indicated, radiologic (ultrasonography, computed tomography, magnetic resonance imaging) examination of the orbit, nasal cavity and paranasal sinuses, and central nervous system.

Pathologic Staging. The nature of the histopathologic specimen (fine-needle aspiration biopsy, excisional biopsy, lumpectomy, or total excision) should be noted. In total excision specimens, histopathologic study of the surgical margins is mandatory. If the specimen includes the globe, then conjunctival margins and the resection margin of the optic nerve need to be examined.
DEFINITION OF TNM

The following definitions apply to clinical and pathologic staging.

Primary Tumor (T)
- **TX**: Primary tumor cannot be assessed
- **T0**: No evidence of primary tumor
- **Tis**: Carcinoma *in situ*
- **T1**: Tumor of any size, not invading the tarsal plate or, at the eyelid margin, 5 mm or less in greatest dimension
- **T2**: Tumor invades tarsal plate or, at the eyelid margin, more than 5 mm but not more than 10 mm in greatest dimension
- **T3**: Tumor involves full eyelid thickness or, at the eyelid margin, more than 10 mm in greatest dimension
- **T4**: Tumor invades adjacent structures, which include bulbar conjunctiva, sclera and globe, soft tissues of the orbit, perineural space, bone and periosteum of the orbit, nasal cavity and paranasal sinuses, and central nervous system

Regional Lymph Nodes (N)
- **NX**: Regional lymph nodes cannot be assessed
- **N0**: No regional lymph node metastasis
- **N1**: Regional lymph node metastasis

Distant Metastasis (M)
- **MX**: Distant metastasis cannot be assessed
- **M0**: No distant metastasis
- **M1**: Distant metastasis

STAGE GROUPING

No stage grouping is presently recommended.

HISTOPATHOLOGIC TYPE

- Basal cell carcinoma
- Squamous cell carcinoma
- Sebaceous carcinoma
- Merkel cell tumor
- Skin appendage carcinoma
- Sarcoma

HISTOLOGIC GRADE (G)

- **GX**: Grade cannot be assessed
- **G1**: Well differentiated
- **G2**: Moderately differentiated
- **G3**: Poorly differentiated
- **G4**: Undifferentiated or differentiation is not applicable

BIBLIOGRAPHY

HISTOLOGIES—CARCINOMA OF THE EYELID

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8010/2</td>
<td>Carcinoma in situ, NOS</td>
</tr>
<tr>
<td>8010/3</td>
<td>Carcinoma, NOS</td>
</tr>
<tr>
<td>8013/3</td>
<td>Large cell neuroendocrine carcinoma</td>
</tr>
<tr>
<td>8015/3</td>
<td>Glassy cell carcinoma</td>
</tr>
<tr>
<td>8020/3</td>
<td>Carcinoma, undifferentiated, NOS</td>
</tr>
<tr>
<td>8021/3</td>
<td>Carcinoma, anaplastic, NOS</td>
</tr>
<tr>
<td>8032/3</td>
<td>Spindle cell carcinoma, NOS</td>
</tr>
<tr>
<td>8033/3</td>
<td>Pseudosarcomatous carcinoma</td>
</tr>
<tr>
<td>8070/2</td>
<td>Squamous cell carcinoma in situ, NOS</td>
</tr>
<tr>
<td>8070/3</td>
<td>Squamous cell carcinoma, NOS</td>
</tr>
<tr>
<td>8071/3</td>
<td>Squamous cell carcinoma, keratinizing, NOS</td>
</tr>
<tr>
<td>8074/3</td>
<td>Squamous cell carcinoma, spindle cell</td>
</tr>
<tr>
<td>8076/2</td>
<td>Squamous cell carcinoma in situ with questionable stromal invasion</td>
</tr>
<tr>
<td>8076/3</td>
<td>Squamous cell carcinoma, microinvasive</td>
</tr>
<tr>
<td>8077/2</td>
<td>Squamous intraepithelial neoplasia, grade III</td>
</tr>
<tr>
<td>8081/2</td>
<td>Bowen disease</td>
</tr>
<tr>
<td>8082/3</td>
<td>Lymphoepithelial carcinoma</td>
</tr>
<tr>
<td>8083/3</td>
<td>Basaloid squamous cell carcinoma</td>
</tr>
<tr>
<td>8084/3</td>
<td>Squamous cell carcinoma, clear cell type</td>
</tr>
<tr>
<td>8090/3</td>
<td>Basal cell carcinoma</td>
</tr>
<tr>
<td>8091/3</td>
<td>Multifocal superficial basal cell carcinoma</td>
</tr>
<tr>
<td>8094/3</td>
<td>Basosquamous carcinoma</td>
</tr>
<tr>
<td>8095/3</td>
<td>Metatypical carcinoma</td>
</tr>
<tr>
<td>8098/3</td>
<td>Adenoid basal carcinoma</td>
</tr>
<tr>
<td>8102/3</td>
<td>Trichilemmocarcinoma</td>
</tr>
<tr>
<td>8110/3</td>
<td>Pilomatrix carcinoma</td>
</tr>
<tr>
<td>8120/3</td>
<td>Transitional cell carcinoma, NOS</td>
</tr>
<tr>
<td>8121/3</td>
<td>Schneiderian carcinoma</td>
</tr>
<tr>
<td>8140/2</td>
<td>Adenocarcinoma in situ, NOS</td>
</tr>
<tr>
<td>8140/3</td>
<td>Adenocarcinoma, NOS</td>
</tr>
<tr>
<td>8141/3</td>
<td>Scirrhous adenocarcinoma</td>
</tr>
<tr>
<td>8147/3</td>
<td>Basal cell adenocarcinoma</td>
</tr>
<tr>
<td>8190/3</td>
<td>Trabecular adenocarcinoma</td>
</tr>
<tr>
<td>8200/3</td>
<td>Adenoid cystic carcinoma</td>
</tr>
<tr>
<td>8240/3</td>
<td>Carcinoid tumor, NOS</td>
</tr>
<tr>
<td>8241/3</td>
<td>Enterochromaffin cell carcinoid</td>
</tr>
<tr>
<td>8242/3</td>
<td>Enterochromaffin-like cell tumor, malignant</td>
</tr>
<tr>
<td>8246/3</td>
<td>Neuroendocrine carcinoma, NOS</td>
</tr>
<tr>
<td>8247/3</td>
<td>Merkel cell carcinoma</td>
</tr>
<tr>
<td>8249/3</td>
<td>Atypical carcinoid tumor</td>
</tr>
<tr>
<td>8260/3</td>
<td>Papillary adenocarcinoma, NOS</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td>8390/3</td>
<td>Skin appendage carcinoma</td>
</tr>
<tr>
<td>8400/3</td>
<td>Sweat gland adenocarcinoma</td>
</tr>
<tr>
<td>8401/3</td>
<td>Apocrine adenocarcinoma</td>
</tr>
<tr>
<td>8402/3</td>
<td>Nodular hidradenoma, malignant</td>
</tr>
<tr>
<td>8403/3</td>
<td>Malignant eccrine spiradenoma</td>
</tr>
<tr>
<td>8407/3</td>
<td>Sclerosing sweat duct carcinoma</td>
</tr>
<tr>
<td>8408/3</td>
<td>Eccrine papillary adenocarcinoma</td>
</tr>
<tr>
<td>8409/3</td>
<td>Eccrine poroma, malignant</td>
</tr>
<tr>
<td>8410/3</td>
<td>Sebaceous adenocarcinoma</td>
</tr>
<tr>
<td>8413/3</td>
<td>Eccrine adenocarcinoma</td>
</tr>
<tr>
<td>8430/3</td>
<td>Mucoepidermoid carcinoma</td>
</tr>
<tr>
<td>8480/3</td>
<td>Mucinous adenocarcinoma</td>
</tr>
<tr>
<td>8550/3</td>
<td>Acinar cell carcinoma</td>
</tr>
<tr>
<td>8560/3</td>
<td>Adenosquamous carcinoma</td>
</tr>
<tr>
<td>8562/3</td>
<td>Epithelial-myoepithelial carcinoma</td>
</tr>
<tr>
<td>8570/3</td>
<td>Adenocarcinoma with squamous metaplasia</td>
</tr>
<tr>
<td>8940/3</td>
<td>Mixed tumor, malignant, NOS</td>
</tr>
<tr>
<td>8941/3</td>
<td>Carcinoma in pleomorphic adenoma</td>
</tr>
<tr>
<td>Type of Specimen</td>
<td>Hospital Name/Address</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Tumor Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carcinoma in situ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tumor of any size, not invading the tarsal plate or, at the eyelid margin, 5 mm or less in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tumor invades tarsal plate or, at the eyelid margin, more than 5 mm but not more than 10 mm in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tumor involves full eyelid thickness or, at the eyelid margin, more than 10 mm in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tumor invades adjacent structures, which include bulbar conjunctiva, sclera and globe, soft tissues of the orbit, perineural space, bone and periosteum of the orbit, nasal cavity and paranasal sinuses, and central nervous system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
</tr>
<tr>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>N0 regional lymph node metastasis</td>
</tr>
<tr>
<td>N1</td>
</tr>
<tr>
<td>Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX</td>
</tr>
<tr>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>M0</td>
</tr>
<tr>
<td>No distant metastasis</td>
</tr>
<tr>
<td>M1</td>
</tr>
<tr>
<td>Distant metastasis</td>
</tr>
<tr>
<td>Biopsy of metastatic site performed □ Y □ N</td>
</tr>
<tr>
<td>Source of pathologic metastatic specimen</td>
</tr>
</tbody>
</table>

Stage Grouping

No stage grouping is presently recommended

Histologic Grade (G)

□ GX Grade cannot be assessed
□ G1 Well differentiated
□ G2 Moderately differentiated
□ G3 Poorly differentiated
□ G4 Undifferentiated or differentiation is not applicable

Residual Tumor (R)

□ RX Presence of residual tumor cannot be assessed
□ R0 No residual tumor
□ R1 Microscopic residual tumor
□ R2 Macroscopic residual tumor

(continued on reverse side)
CARCINOMA OF THE EYELID

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

☐ **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.

☐ **y prefix** indicates those cases in which classification is performed during or following initial multimodality therapy. The cT(y)NM or pT(y)NM category is identified by the "y" prefix. The ycT(y)NM or ypT(y)NM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.

☐ **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rT(y)NM.

☐ **a prefix** designates the stage determined at autopsy: aT(y)NM.

Prognostic Indicators (if applicable)

ILLUSTRATION

Illustrate primary tumor and regional nodes involved.

Physician's Signature ____________________________ Date ________________

Notes

Additional Descriptors

<table>
<thead>
<tr>
<th>Lymphatic Vessel Involvement (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LX Lymphatic vessel invasion cannot be assessed</td>
</tr>
<tr>
<td>L0 No lymphatic vessel invasion</td>
</tr>
<tr>
<td>L1 Lymphatic vessel invasion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Venous Involvement (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VX Venous invasion cannot be assessed</td>
</tr>
<tr>
<td>V0 No venous invasion</td>
</tr>
<tr>
<td>V1 Microscopic venous invasion</td>
</tr>
<tr>
<td>V2 Macroscopic venous invasion</td>
</tr>
</tbody>
</table>

354 American Joint Committee on Cancer - 2002
Carcinoma of the Conjunctiva

ANATOMY

Primary Site. The conjunctiva consists of stratified epithelium that contains mucus-secreting goblet cells; these cells are most numerous in the fornices. Palpebral conjunctiva lines the eyelid; bulbar conjunctiva covers the eyeball. Conjunctival epithelium merges with that of the cornea at the limbus. It is at this exposed site, particularly at the temporal limbus, that carcinoma is most likely to arise. Conjunctival intraepithelial neoplasia (C.I.N.) embraces all forms of intraepithelial dysplasia, including in situ squamous cell carcinoma.

Regional Lymph Nodes. The regional lymph nodes are:

- Preauricular (parotid)
- Submandibular
- Cervical

For pN, histologic examination of a regional lymphadenectomy specimen, if performed, will include one or more regional lymph nodes.

Metastatic Sites. Tumors of the conjunctiva, in addition to spreading by way of regional lymphatics, may also involve the eyelid proper, the eye, orbit, adjacent paranasal sinus structures, and the brain.

RULES FOR CLASSIFICATION

Clinical Staging. The assessment of cancer is based on inspection, slit-lamp examination, palpation of the regional lymph nodes, and, when indicated, radiologic examination (including computed tomography and magnetic resonance imaging) and ultrasonographic examination of the orbit, paranasal sinuses, brain, and chest.

Pathologic Staging. Complete resection of the primary site is indicated if possible. Cryotherapy and/or topical che-

motherapy may be considered as adjunctive therapies. Extensive tumor involvement of orbital soft tissues requires exenteration. The specimen should be thoroughly sampled for histologic study of surgical margins, type of tumor, and grade of malignancy.

DEFINITION OF TNM

These definitions apply to both clinical and pathologic staging.

Primary Tumor (T)

- TX Primary tumor cannot be assessed
- T0 No evidence of primary tumor
- Tis Carcinoma in situ
- T1 Tumor 5 mm or less in greatest dimension
- T2 Tumor more than 5 mm in greatest dimension, without invasion of adjacent structures
- T3 Tumor invades adjacent structures, excluding the orbit
- T4 Tumor invades the orbit with or without further extension
- T4a Tumor invades orbital soft tissues, without bone invasion
- T4b Tumor invades bone
- T4c Tumor invades adjacent paranasal sinuses
- T4d Tumor invades brain

Regional Lymph Nodes (N)

- NX Regional lymph nodes cannot be assessed
- N0 No regional lymph node metastasis
- N1 Regional lymph node metastasis

Distant Metastasis (M)

- MX Distant metastasis cannot be assessed
- M0 No distant metastasis
- M1 Distant metastasis
STAGE GROUPING
No stage grouping is presently recommended.

HISTOPATHOLOGIC TYPE
This classification applies only to carcinoma of the conjunctiva.

Conjunctival intraepithelial neoplasia (C.I.N.) including in situ squamous cell carcinoma.
Squamous cell carcinoma
Mucocoeplidoid carcinoma
Basal cell carcinoma

HISTOLOGIC GRADE (G)
GX Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3 Poorly differentiated
G4 Undifferentiated

BIBLIOGRAPHY
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>8098/3</td>
<td>Adenoid basal carcinoma</td>
</tr>
<tr>
<td>8120/3</td>
<td>Transitional cell carcinoma, NOS</td>
</tr>
<tr>
<td>8121/3</td>
<td>Schneiderian carcinoma</td>
</tr>
<tr>
<td>8140/2</td>
<td>Adenocarcinoma in situ, NOS</td>
</tr>
<tr>
<td>8140/3</td>
<td>Adenocarcinoma, NOS</td>
</tr>
<tr>
<td>8141/3</td>
<td>Scirrhous adenocarcinoma</td>
</tr>
<tr>
<td>8246/3</td>
<td>Neuroendocrine carcinoma, NOS</td>
</tr>
<tr>
<td>8247/3</td>
<td>Merkel cell carcinoma</td>
</tr>
<tr>
<td>8249/3</td>
<td>Atypical carcinoid tumor</td>
</tr>
<tr>
<td>8260/3</td>
<td>Papillary adenocarcinoma, NOS</td>
</tr>
<tr>
<td>8390/3</td>
<td>Skin appendage carcinoma</td>
</tr>
<tr>
<td>8400/3</td>
<td>Sweat gland adenocarcinoma</td>
</tr>
<tr>
<td>8401/3</td>
<td>Apocrine adenocarcinoma</td>
</tr>
<tr>
<td>8402/3</td>
<td>Nodular hidradenoma, malignant</td>
</tr>
<tr>
<td>8403/3</td>
<td>Malignant eccrine spiradenoma</td>
</tr>
<tr>
<td>8407/3</td>
<td>Sclerosing sweat duct carcinoma</td>
</tr>
<tr>
<td>8408/3</td>
<td>Eccrine papillary adenocarcinoma</td>
</tr>
<tr>
<td>8409/3</td>
<td>Eccrine poroma, malignant</td>
</tr>
<tr>
<td>8430/3</td>
<td>Mucoepidermoid carcinoma</td>
</tr>
<tr>
<td>8480/3</td>
<td>Mucinous adenocarcinoma</td>
</tr>
<tr>
<td>8550/3</td>
<td>Acinar cell carcinoma</td>
</tr>
<tr>
<td>8560/3</td>
<td>Adenosquamous carcinoma</td>
</tr>
<tr>
<td>8562/3</td>
<td>Epithelial-myoepithelial carcinoma</td>
</tr>
<tr>
<td>8570/3</td>
<td>Adenocarcinoma with squamous metaplasia</td>
</tr>
<tr>
<td>8940/3</td>
<td>Mixed tumor, malignant, NOS</td>
</tr>
<tr>
<td>8941/3</td>
<td>Carcinoma in pleomorphic adenoma</td>
</tr>
</tbody>
</table>
CARCINOMA OF THE CONJUNCTIVA

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen

Tumor Size

Histopathologic Type

Laterality: □ Bilateral □ Left □ Right

DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>□</td>
<td>TX Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T0 No evidence of primary tumor</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>Tis Carcinoma in situ</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T1 Tumor 5 mm or less in greatest dimension</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T2 Tumor more than 5 mm in greatest dimension, without invasion of adjacent structures</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T3 Tumor invades adjacent structures, excluding the orbit</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T4 Tumor invades the orbit with or without further extension</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T4a Tumor invades orbital soft tissues without bone invasion</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T4b Tumor invades bone</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T4c Tumor invades adjacent paranasal sinuses</td>
</tr>
<tr>
<td>□</td>
<td>□</td>
<td>T4d Tumor invades brain</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

□	□	NX Regional lymph nodes cannot be assessed
□	□	N0 No regional lymph node metastasis
□	□	N1 Regional lymph node metastasis

Distant Metastasis (M)

□	□	MX Distant metastasis cannot be assessed
□	□	M0 No distant metastasis
□	□	M1 Distant metastasis

Biopsy of metastatic site performed... □ Y... □ N
Source of pathologic metastatic specimen

Stage Grouping

No stage grouping is presently recommended.

Histologic Grade (G)

□	GX Grade cannot be assessed
□	G1 Well differentiated
□	G2 Moderately differentiated
□	G3 Poorly differentiated
□	G4 Undifferentiated

Residual Tumor (R)

□	RX Presence of residual tumor cannot be assessed
□	R0 No residual tumor
□	R1 Microscopic residual tumor
□	R2 Macroscopic residual tumor

(continued on reverse side)
Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix** indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
- **a prefix** designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.

- **Lacrimal gland**
- **Lacrimal sac**
- **Tarsal plate**
- **Levator muscle**
- **Lacrimal gland**
- **Tarsal plate**
- **Orbital roof**
- **Uvea**
- **Conjunctiva**
- **Eyelids**
- **Upper**
- **Lower**

Physician's Signature ___________________________ Date ___________________________
ANATOMY

Primary Site. Melanocytes have been noted to exist in the basal layer of the conjunctival epithelium. These melanocytes can be the source of acquired melanosis, malignant melanoma, and junctional and compound nevi. Melanocytic conjunctival tumors range from melanocytic hyperplasia and melanoma in situ to invasive malignant melanoma. Local clinically relevant classifications divide these tumors by conjunctival location, uni- or multifocality, and tumor thickness. Factors that influence both treatment and prognosis include local invasion, nodal spread, and distant metastasis.

Regional Lymph Nodes. The regional lymph nodes are:

- Preauricular (parotid)
- Submandibular
- Cervical

For pN, histologic examination of a regional lymphadenectomy specimen will ordinarily include one or more regional lymph nodes.

Metastatic Sites. In addition to spread by lymphatics and the bloodstream, direct extension into the orbit, eyelids, and sinuses occurs.

RULES FOR CLASSIFICATION

The classification applies only to conjunctival melanoma. In general, there should be a histologic evaluation of the tumor.

Clinical Staging. The clinical assessment of a melanocytic conjunctival tumor is based on inspection, slit-lamp examination, and palpation of the regional lymph nodes. All conjunctival surfaces should be inspected (including eversion of the upper lid). Inspection of the ipsilateral sinuses is indicated if punctal involvement has been noted.

Radiologic evaluations to stage local disease may include computed tomography, magnetic resonance imaging, and/or ultrasonography of the orbits and sinuses. Complete metastatic surveys may include hematologic screening as well as radiologic evaluations of the head, chest, and abdomen. Bone scans may be employed.

Pathologic Staging. Complete resection of the primary site is indicated. Cryotherapy, chemotheraphy, and radiation therapy have been employed when complete resection is not possible or have been employed as an adjunctive treatment. Histopathologic evaluations for negative peripheral and deep margins should be performed. To best judge the depth of penetration of the tumor, sections should be made perpendicular to the epithelial surface. Perpendicular sections can be facilitated if the surgeon places the specimen epithelial side superior on a moist filter paper. The role of sentinel node biopsy is unknown.

DEFINITION OF TNM

Clinical

Primary Tumor (T)

- TX Primary tumor cannot be assessed
- T0 No evidence of primary tumor
- T1 Tumor of the bulbar conjunctiva
- T2 Tumor of the bulbar conjunctiva with corneal extension
- T3 Tumor extending into the conjunctival fornix, palpebral conjunctiva, or caruncle
- T4 Tumor invades the eyelid, globe, orbit, sinuses, or central nervous system
Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1 Regional lymph node metastasis

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis

Pathologic
Primary Tumor (pT)
pTX Primary tumor cannot be assessed
pT0 No evidence of primary tumor
pT1 Tumor of the bulbar conjunctiva confined to the epithelium
pT2 Tumor of the bulbar conjunctiva not more than 0.8 mm in thickness with invasion of the substantia propria
pT3 Tumor of the bulbar conjunctiva more than 0.8 mm in thickness with invasion of the substantia propria or tumors involving the palpebral or caruncular conjunctiva
pT4 Tumor invades the eyelid, globe, orbit, sinuses, or central nervous system

Regional Lymph Nodes (pN)
pNX Regional lymph nodes cannot be assessed
pN0 No regional lymph node metastasis
pN1 Regional lymph node metastasis present

Distant Metastasis (pM)
pMX Distant metastasis cannot be assessed
pM0 No distant metastasis
pM1 Distant metastasis

STAGE GROUPING
No stage grouping is presently recommended.

HISTOPATHOLOGIC TYPE
This categorization applies only to melanoma of the conjunctiva.

HISTOLOGIC GRADE (G)
Histologic grade represents the origin of the primary tumor.

GX Origin cannot be assessed
G0 Primary acquired melanosis without cellular atypia
G1 Conjunctival nevus
G2 Primary acquired melanosis with cellular atypia (epithelial disease only)
G3 De novo malignant melanoma

BIBLIOGRAPHY

HISTOLOGIES—MALIGNANT MELANOMA OF THE CONJUNCTIVA
8720/2 Melanoma in situ
8720/3 Malignant melanoma, NOS
8723/3 Malignant melanoma, regressing
8730/3 Amelanotic melanoma
8740/3 Malignant melanoma in junctional nevus
8741/2 Precancerous melanosis, NOS
8741/3 Malignant melanoma in precancerous melanosis
8742/2 Lentigo maligna
8742/3 Lentigo maligna melanoma
8743/3 Superficial spreading melanoma
8744/3 Acral lentiginous melanoma, malignant
8745/3 Desmoplastic melanoma, malignant
8751/3 Malignant melanoma in giant pigmented nevus
8770/3 Mixed epithelioid and spindle cell melanoma
8771/3 Epithelioid cell melanoma
8772/3 Spindle cell melanoma
MALIGNANT MELANOMA OF THE CONJUNCTIVA

Hospital Name/Address

Patient Name/Information

Type of Specimen:

Tumor Size:

Histopathologic Type:

Laterality:

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ TX</td>
<td>pTX</td>
<td>Primary tumor cannot be assessed</td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>□ T0</td>
<td>pT0</td>
<td>No evidence of primary tumor</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>□ T1</td>
<td>pT1</td>
<td>Tumor of the bulbar conjunctiva</td>
<td>Tumor of the bulbar conjunctiva confined to the epithelium</td>
</tr>
<tr>
<td>T2</td>
<td>pT2</td>
<td>Tumor of the bulbar conjunctiva with corneal extension</td>
<td>Tumor of the bulbar conjunctiva not more than 0.8 mm in thickness with invasion of the substantia propria</td>
</tr>
<tr>
<td>□ T3</td>
<td>pT3</td>
<td>Tumor extending into the conjunctival fornix, palpebral conjunctiva, or caruncle</td>
<td>Tumor of the bulbar conjunctiva more than 0.8 mm in thickness with invasion of the substantia propria or tumors involving palpebral or caruncular conjunctiva</td>
</tr>
<tr>
<td>□ T4</td>
<td>pT4</td>
<td>Tumor invades the eyelid, globe, orbit, sinuses, or central nervous system</td>
<td>Tumor invades the eyelid, globe, orbit, sinuses, or central nervous system</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ pNX</td>
<td>pNX</td>
<td>Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>□ pN0</td>
<td>pN0</td>
<td>No regional lymph node metastasis</td>
</tr>
<tr>
<td>□ pN1</td>
<td>pN1</td>
<td>Regional lymph node metastasis present</td>
</tr>
</tbody>
</table>

Distant Metastasis (M)

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ pMX</td>
<td>pMX</td>
<td>Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>□ pM0</td>
<td>pM0</td>
<td>No distant metastasis</td>
</tr>
<tr>
<td>pM1</td>
<td>pM1</td>
<td>Distant metastasis</td>
</tr>
</tbody>
</table>

*Biopsy of metastatic site performed... □ Y □ N
Source of pathologic metastatic specimen*

Stage Grouping

No stage grouping is presently recommended.

Histologic Grade (G)

Histopathologic grade represents the origin of the primary tumor.

- □ GX: Origin cannot be assessed
- □ G0: Primary acquired melanoma without cellular atypia
- □ G1: Conjunctival nevus
- □ G2: Primary acquired melanoma with cellular atypia (epithelial disease only)
- □ G3: *De novo* malignant melanoma

Residual Tumor (R)

- □ RX: Presence of residual tumor cannot be assessed
- □ R0: No residual tumor
- □ R1: Microscopic residual tumor
- □ R2: Macroscopic residual tumor

(continued on reverse side)
MALIGNANT MELANOMA OF THE CONJUNCTIVA

Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix** indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- **a prefix** designates the stage determined at autopsy: aTNM.

Prognostic indicators (if applicable)

ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.

- **Lacrimal gland**
- **Lacrimal sac**
- **Tarsal plate**
- **Orbital roof**
- **Uvea**
- **Conjunctiva**
- **Eyelids**
- **Upper**
- **Lower**

Notes
Additional Descriptors

- **Lymphatic Vessel Invasion (L)**
 - LX: Lymphatic vessel invasion cannot be assessed
 - L0: No lymphatic vessel invasion
 - L1: Lymphatic vessel invasion

- **Venous Invasion (V)**
 - VX: Venous invasion cannot be assessed
 - V0: No venous invasion
 - V1: Microscopic venous invasion
 - V2: Microscopic venous invasion

Physician’s Signature ___________________________ Date ___________________________
Malignant Melanoma of the Uvea

C69.3 Choroid

C69.4 Ciliary body and iris

SUMMARY OF CHANGES

Iris

* T1 lesions have been divided into T1a, T1b, and T1c.
* T1a is defined as tumor limited to the iris not more than 3 clock hours in size.
* T1b is defined as tumor limited to the iris more than 3 clock hours in size.
* T1c is defined as tumor limited to the iris with melanomalytic glaucoma.
* The definition of T2 lesions has been modified, and T2 has been divided by the addition T2a.
* T2 is defined as tumor confluent with or extending into the ciliary body and/or choroid.
* T2a is defined as tumor confluent with or extending into the ciliary body and/or choroid with melanomalytic glaucoma.
* The definition of T3 lesions has been modified, and T3 has been divided by the addition T3a.
* T3 is defined as tumor confluent with or extending into the ciliary body and/or choroid with extra scleral extension.
* T3a is defined as tumor confluent with or extending into the ciliary body with extrascleral extension and melanomalytic glaucoma.

Ciliary Body and Choroid

* The definition of T1 lesions has been modified, and T1 has been divided into T1a, T1b, and T1c.
* T1 is defined as tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness).
* T1a is defined as tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) without extraocular extension.
* T1b is defined as tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) with microscopic extraocular extension.
* T1c is defined as tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) with macroscopic extraocular extension.
* The definition of T2 lesions has been modified, and T2 has been divided into T2a, T2b, and T2c.

continued
SUMMARY OF CHANGES (CONTINUED)

- T2c is defined as tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height.
- T2a is defined as tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height without extraocular extension.
- T2b is defined as tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height with microscopic extraocular extension.
- T2c is defined as tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height with macroscopic extraocular extension.

ANATOMY

Primary Site. The uvea (uveal tract) is the middle layer of the eye, situated between the cornea and sclera externally and the retina and its analogous tissues internally. The uveal tract is divided into three regions—iris, ciliary body, and choroid—and it is a highly vascular structure. The choroid primarily comprises blood vessels with little intervening stroma. Uveal melanomas are believed to arise from uveal melanocytes and are therefore of neural crest origin. Because there are no lymphatic channels within the eye, uveal melanomas are thought to metastasize exclusively hematogenously to visceral organs. In the rare event that uveal melanoma metastasizes to lymph nodes, it is typically after extraocular spread and invasion of conjunctival, adnexal, and/or orbital lymphatics.

Uveal melanomas arise most commonly in the choroid, less in the ciliary body, and least in the iris. Choroidal melanomas extend commonly through Bruch’s membrane into the retina and vitreous, less commonly through the sclera into the orbit, and rarely into the optic nerve.

Intraocular location of a uveal melanoma can also affect a patient’s prognosis for metastasis. Tumors confined to the iris carry the most favorable prognosis, followed by those in the choroid; ciliary involvement carries the least favorable prognosis. Tumor size (primarily largest tumor diameter) continues to be the dominant predictor for metastasis. It is currently impossible to distinguish clinically between a large nevus and a small uveal melanoma. Clinical findings of orange pigment, subretinal fluid, and thickness greater than 2 mm are more commonly associated with uveal melanomas than with nevi.

Pigmented iris tumors that demonstrate intrinsic vascularity, size greater than 3 clock hours and thickness greater than 1 mm, sector cataract, pigment dispersion (melanocytes and melanin granules or melanocytic tumor cells), secondary glaucoma, and extrascleral extension are more likely to be malignant melanomas than benign melanocytic proliferations. In general, small uveal melanocytic lesions are observed for growth prior to being clinically defined as uveal melanomas.

Regional Lymph Nodes. This category applies only to extrascleral extension and conjunctival invasion. Regional lymphadenectomy will ordinarily include six or more regional lymph nodes. The regional lymph nodes are:

- Preauricular
- Submandibular
- Cervical

Metastatic Sites. Uveal melanomas may metastasize hematogenously to various visceral organs. The liver is the most common site, and often the only site, of clinically detectable metastasis. Less common sites include the lung, pleura, subcutaneous tissues, bone, and brain.

RULES FOR CLASSIFICATION

Clinical Staging. The assessment of the tumor is based on clinical examination, including slit-lamp examination and direct and indirect ophthalmoscopy. Additional methods, such as ultrasonography, computerized stereometry, fluorescein angiography, and isotope examination, may enhance the accuracy of appraisal.

Pathologic Staging. Resection of the primary site by iridectomy, iridocyclectomy, eye wall resection, or enucleation is needed for complete pathologic staging. Assessment of the extent of the tumor, measured in clock hours of involvement, basal dimension, and height and margins of resection, is necessary. Resection or needle biopsy of enlarged regional lymph nodes or orbital masses is desirable.
DEFINITION OF TNM

These definitions apply to both clinical* and pathologic staging.

Primary Tumor

All Uveal Melanomas
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor

Iris
T1 Tumor limited to the iris
T1a Tumor limited to the iris not more than 3 clock hours in size
T1b Tumor limited to the iris more than 3 clock hours in size
T1c Tumor limited to the iris with melanomalytic glaucoma

T2 Tumor confluent with or extending into the ciliary body and/or choroid
T2a Tumor confluent with or extending into the ciliary body and/or choroid with melanomalytic glaucoma
T3 Tumor confluent with or extending into the ciliary body and/or choroid with scleral extension
T3a Tumor confluent with or extending into the ciliary body with scleral extension and melanomalytic glaucoma
T4 Tumor with extraocular extension

Ciliary Body and Choroid

T1* Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness)
T1a Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) without microscopic extraocular extension
T1b Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) with microscopic extraocular extension
T1c Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) with macroscopic extraocular extension
T2* Tumor greater than 10 mm but not more than 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness)
T2a Tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness) without microscopic extraocular extension
T2b Tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness) with microscopic extraocular extension
T2c Tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness) with macroscopic extraocular extension
T3* Tumor more than 16 mm in greatest diameter and/or greater than 10 mm in maximum height (thickness) without extraocular extension

T4 Tumor more than 16 mm in greatest diameter and/or greater than 10 mm in maximum height (thickness) with extraocular extension

*Note: When basal dimension and apical do not fit this classification, the largest tumor diameter should be used for classification. In clinical practice, the tumor base may be estimated in optic disc diameters (dd) (average: 1 dd = 1.5 mm). The height may be estimated in diopters (average: 3 diopters = 1 mm). Techniques such as ultrasonography, visualization, and photography are frequently used to provide more accurate measurements.

Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1 Regional lymph node metastasis

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis

STAGE GROUPING

<table>
<thead>
<tr>
<th>Stage I</th>
<th>T1</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>Stage III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
</tbody>
</table>

HISTOPATHOLOGIC TYPE

The histopathologic types are

- Spindle cell melanoma
- Mixed cell melanoma
- Epithelioid cell melanoma

HISTOLOGIC GRADE (G)

GX Grade cannot be assessed
G1 Spindle cell melanoma
G2 Mixed cell melanoma
G3 Epithelioid cell melanoma
BIBLIOGRAPHY

HISTOLOGIES—MALIGNANT MELANOMA OF THE UVEA

8730/2 Melanoma in situ
8730/3 Malignant melanoma, NOS
8723/3 Malignant melanoma, regressing
8730/3 Amelanotic melanoma
8740/3 Malignant melanoma in junctional nevus
8741/2 Precancerous melanosis, NOS
8741/3 Malignant melanoma in precancerous melanosis
8742/2 Lentigo maligna
8742/3 Lentigo maligna melanoma
8743/3 Superficial spreading melanoma
8744/3 Acral lentiginous melanoma, malignant
8745/3 Desmoplastic melanoma, malignant
8761/3 Malignant melanoma in giant pigmented nevus
8770/3 Mixed epithelioid and spindle cell melanoma
8771/3 Epithelioid cell melanoma
8772/3 Spindle cell melanoma
Malignant Melanoma of the Uvea

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of Specimen ______________________ Histopathologic Type ______________________

Tumor Size ______________________ Laterality: ☐ Bilateral ☐ Left ☐ Right

Definitions

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>All Uveal Melanomas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Iris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 Tumor limited to the iris</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1a Tumor limited to the iris (not more than 3 clock hours in size)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1b Tumor limited to the iris (more than 3 clock hours in size)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1c Tumor limited to iris with melanomatosic glaucoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2 Tumor confluents with or extending into the ciliary body and/or choroid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2a Tumor confluents with or extending into the ciliary body and/or choroid with melanomatosic glaucoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3 Tumor confluents with or extending into the ciliary body and/or choroid with scleral extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3a Tumor confluents with or extending into the ciliary body with scleral extension and melanomatosic glaucoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4 Tumor with extraocular extension</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Ciliary Body and Choroid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T1 Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1a Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) without microscopic extraocular extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1b Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) with microscopic extraocular extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1c Tumor 10 mm or less in greatest diameter and 2.5 mm or less in greatest height (thickness) with macroscopic extraocular extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2 Tumor greater than 10 mm but not more than 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2a Tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness) without microscopic extraocular extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2b Tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness) with microscopic extraocular extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2c Tumor 10 mm to 16 mm in greatest basal diameter and between 2.5 and 10 mm in maximum height (thickness) with macroscopic extraocular extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3 Tumor more than 16 mm in greatest diameter and/or greater than 10 mm in maximum height (thickness) without extraocular extension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4 Tumor more than 16 mm in greatest diameter and/or greater than 10 mm in maximum height (thickness) with extraocular extension</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

- NX Regional lymph nodes cannot be assessed
- N0 No regional lymph node metastasis
- N1 Regional lymph node metastasis

Distant Metastasis (M)

- MX Distant metastasis cannot be assessed
- M0 No distant metastasis
- M1 Distant metastasis

Biopsy of metastatic site performed ______ Y ______ N

Source of pathologic metastatic specimen ______________________ (continued on reverse side)

Notes

1. When base diameter and optical height are not both classified, the largest tumor diameter should be used for identification. In clinical practice, the tumor size may be estimated in optic disc diameter (DD) (average 1.60 mm) and in thickness in diopters (DD) (average 0.90 mm). The height may be estimated in diopters (DD) (average 0.90 mm). In cases of multiple tumors, the largest tumor should be used to provide size and thickness measurements.

American Joint Committee on Cancer - 2002
MALIGNANT MELANOMA OF THE UVEA

Stage Grouping

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Stage</th>
<th>T1</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>T1a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>T1b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>T1c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>T2a</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>T2b</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II</td>
<td>T2c</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td>T3</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>III</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV</td>
<td>Any T</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IV</td>
<td>Any T</td>
<td>Any N</td>
<td>M1</td>
</tr>
</tbody>
</table>

Histologic Grade (G)

- **GX**: Grade cannot be assessed
- **G1**: Spindle cell melanoma
- **G2**: Mixed cell melanoma
- **G3**: Epithelioid cell melanoma

Residual Tumor (R)

- **RX**: Presence of residual tumor cannot be assessed
- **R0**: No residual tumor
- **R1**: Microscopic residual tumor
- **R2**: Macroscopic residual tumor

Venous Invasion (V)

- **VX**: Venous invasion cannot be assessed
- **V0**: No venous invasion
- **V1**: Microscopic venous invasion
- **V2**: Macroscopic venous invasion

Visual Acuity

- (Snellen or equivalent)

Additional Descriptors

- **L** - Lymphatic Vessel Invasion
- **LY** - Lymphatic vessel invasion cannot be assessed
- **L1** - Lymphatic vessel invasion

Prognostic Indicators (if applicable)

Illustration

Indicate on diagrams and describe exact location and characteristics of tumor.

Physician's Signature

Date

American Joint Committee on Cancer • 2002

370
Retinoblastoma

C69.2 Retina

SUMMARY OF CHANGES

- T1 was redefined, and the lesions have been divided into T1a and T1b.
- T2 was redefined, and the lesions have been divided into T2a, T2b, and T2c.
- T3 was redefined, and T3a, T3b, and T3c have been removed.
- T4a and T4b have been removed.
- N2 (distant lymph node involvement) has been added to regional lymph nodes (N).
- pT1, pT2, and pT3 have been redefined.
- pT2 lesions have been divided into pT2a, pT2b, and pT2c.
- pM1 has been divided into pM1a and pM1b.
- No stage grouping applies to retinoblastoma.

ANATOMY

Primary Site. The retina is composed of neurons and glial cells. The precursors of the neuronal elements give rise to retinoblastoma, whereas the glial cells give rise to astrocytomas, which are benign and extremely rare in the retina. The retina is limited internally by a membrane that separates it from the vitreous cavity. Externally, it is limited by the retinal pigment epithelium and Bruch's membrane, which separate it from the choroid and act as natural barriers to extension of retinal tumors into the choroid. The continuation of the retina with the optic nerve allows direct extension of retinoblastomas into the optic nerve and then to the subarachnoid space. Because the retina has no lymphatics, spread of retinal tumors is either by direct extension into adjacent structures or by distant metastasis through hematogenous routes.

Regional Lymph Nodes. Because there are no intraocular lymphatics, this category of staging applies only to anterior extracapsular extension. The regional lymph nodes are preauricular (parotid), submandibular, and cervical.

Local Extension. Local extension anteriorly can result in soft tissue involvement of the face or a mass protruding from between the lids. Posterior extension results in retinoblastoma extending into the orbit, paranasal sinuses, and/or brain.

Metastatic Sites. Retinoblastoma can metastasize through hematogenous routes to various sites, most notably the bone marrow, skull, long bones, and brain.

RULES FOR CLASSIFICATION

Clinical Staging. All suspected cases of retinoblastoma should have a neural imaging scan. If it is possible to obtain only one imaging study, computerized tomography (CT) is recommended because detection of calcium in the eye on CT confirms the clinical suspicion of retinoblastoma. The request should include cuts through the pineal region of the brain. Magnetic resonance imaging is particularly useful if extension into either the extraocular space or the optic nerve is suspected or if there is a concern about the possible presence of a primitive neuroectodermal tumor (PNET) in the pineal region (trilateral retinoblastoma).

A staging examination under anesthesia should include ocular ultrasound and retinal drawings of each eye, with each identifiable tumor measured and numbered. Digital images
of the retina may be very helpful. In bilateral cases, each eye must be classified separately. This classification does not apply to complete spontaneous regression of the tumor. Tumor size or the distance from the tumor to the disc or fovea is recorded in millimeters. These millimeter distances are measured by ultrasound, estimated by comparison with a normalized optic disc (1.5 mm), or deduced from the fact that the field of a 28-diopter condensing lens has a retinal diameter of 13 mm.

Pathologic Staging. If one eye is enucleated, pathologic staging of that eye provides information supplemental to the clinical staging. First, the pathology should provide histologic verification of the disease. All clinical and pathologic data from the resected specimen are to be used.

DEFINITION OF TNM

Clinical Classification (cTNM). The classification that follows was extensively revised from the last publication. In T1 eyes, the tumor is confined to the retina, the tissue of origin. The classification below reflects a decade’s experience with the response to chemotherapy followed by focal consolidation. The likelihood of salvaging good vision and the eye goes down progressively from T1 through T2. There is a corresponding increase in the morbidity and intensity of therapy from T1 through T2.

- **Primary Tumor (T)**
 - TX Primary tumor cannot be assessed
 - T0 No evidence of primary tumor
 - T1 Tumor confined to the retina (no vitreous seeding or significant retinal detachment). No retinal detachment or subretinal fluid >5 mm from the base of the tumor
 - T1a Any eye in which the largest tumor is less than or equal to 3 mm in height and no tumor is located closer than 1 DD (1.5 mm) to the optic nerve or fovea
 - T1b All other eyes in which the tumor(s) are confined to the retina regardless of location or size (up to half the volume of the eye). No vitreous seeding. No retinal detachment or subretinal fluid >5 mm from the base of the tumor
 - T2 Tumor with contiguous spread to adjacent tissues or spaces (vitreous or subretinal space)
 - T2a Minimal tumor spread to vitreous and/or subretinal space. Fine local or diffuse vitreous seeding and/or serous retinal detachment up to total detachment may be present, but no clumps, lumps, snowballs, or avascular masses are allowed in the vitreous or subretinal space. Calcium flecks in the vitreous or subretinal space are allowed. The tumor may fill up to 2/3 the volume of the eye.
 - T2b Massive tumor spread to the vitreous and/or subretinal space. Vitreous seeding and/or subretinal implantation may consist of lumps, clumps, snowballs, or avascular tumor masses. Retinal detachment may be total. Tumor may fill up to 2/3 the volume of the eye.

- **Regional Lymph Nodes (N)**
 - NX Regional lymph nodes cannot be assessed
 - N0 No regional lymph node involvement
 - N1 Regional lymph node involvement (preauricular, submandibular, or cervical)
 - N2 Distant lymph node involvement

- **Distant Metastasis (M)**
 - MX Distant metastasis cannot be assessed
 - M0 No distant metastasis
 - M1 Metastasis to central nervous system and/or bone, bone marrow, or other sites

Pathologic Classification (pTNM). There is one major difference in the pathologic classification from the last edition. No differentiating pathologic separation is proposed for those eyes in which the tumor may vary in size but is confined to the retina, vitreous, or subretinal space.

- **Primary Tumor (pT)**
 - pTX Primary tumor cannot be assessed
 - pT0 No evidence of primary tumor
 - pT1 Tumor confined to the retina, vitreous, or subretinal space. No optic nerve or choroidal invasion
 - pT2 Minimal invasion of the optic nerve and/or optic coats
 - pT2a Tumor invades optic nerve up to, but not through, the level of the lamina cribrosa
 - pT2b Tumor invades choroid focally
 - pT2c Tumor invades optic nerve up to, but not through, the level of the lamina cribrosa and invades the choroid focally
 - pT3 Significant invasion of the optic nerve and/or optic coats
 - pT3a Tumor invades optic nerve through the level of the lamina cribrosa but not to the line of resection
 - pT3b Tumor massively invades the choroid
 - pT3c Tumor invades the optic nerve through the level of the lamina cribrosa but not to the line of resection and massively invades the choroid
pT4 Extraocular tumor extension that includes:
 Invasion of optic nerve to the line of resection
 Invasion of orbit through the sclera
 Extension both anteriorly or posteriorly into the orbit
 Extension into the brain
 Extension into the subarachnoidal space of the optic nerve
 Extension to the apex of the orbit
 Extension to, but not through, the chiasm
 Extension into the brain beyond the chiasm

Regional Lymph Nodes (pN)
pNX Regional lymph nodes cannot be assessed
pN0 No regional lymph node metastasis
pN1 Regional lymph node metastasis

Distant Metastasis (pM)
pMX Distant metastasis cannot be assessed
pM0 No distant metastasis
pM1 Distant metastasis
pM1a Bone marrow
pM1b Other sites

STAGE GROUPING
No stage grouping applies.

HISTOPATHOLOGIC TYPE
This classification applies only to retinoblastoma.

BIBLIOGRAPHY

HISTOLOGIES—RETINOBLASTOMA
9510/3 Retinoblastoma, NOS
9511/3 Retinoblastoma, differentiated
9512/3 Retinoblastoma, undifferentiated
9513/3 Retinoblastoma, diffuse
RETINOBLASTOMA

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Type of Specimen

Tumor Size

Histopathologic Type

<table>
<thead>
<tr>
<th>Laterality:</th>
<th>Bilateral</th>
<th>Left</th>
<th>Right</th>
</tr>
</thead>
</table>

DEFINITIONS

<table>
<thead>
<tr>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pTX Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td>pT0 No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td>pT1 Tumor confined to the retina, vitreous, or subretinal space. No optic nerve or choroidal invasion</td>
</tr>
<tr>
<td></td>
<td>pT2 Minimal invasion of the optic nerve and/or optic coats</td>
</tr>
<tr>
<td></td>
<td>pT2a Tumor invades optic nerve up to, but not through, the level of the lamina cribrosa</td>
</tr>
<tr>
<td></td>
<td>pT2b Tumor invades choroid focally</td>
</tr>
<tr>
<td></td>
<td>pT2c Tumor invades optic nerve up to, but not through, the level of the lamina cribrosa and invades the choroid focally</td>
</tr>
<tr>
<td></td>
<td>pT3 Significant invasion of the optic nerve and/or optic coats</td>
</tr>
<tr>
<td></td>
<td>pT3a Tumor invades optic nerve through the level of the lamina cribrosa but not to the line of resection</td>
</tr>
<tr>
<td></td>
<td>pT3b Tumor massively invades the choroid</td>
</tr>
<tr>
<td></td>
<td>pT3c Tumor invades the optic nerve through the level of the lamina cribrosa but not to the line of resection and massively invades the choroid</td>
</tr>
<tr>
<td></td>
<td>pT4 Extranuclear extension which includes:</td>
</tr>
<tr>
<td></td>
<td>- Tumor invades optic nerve to the line of resection</td>
</tr>
<tr>
<td></td>
<td>- Tumor invades the orbit through the sclera</td>
</tr>
<tr>
<td></td>
<td>- Tumor extends both anteriorly or posteriorly into the orbit</td>
</tr>
<tr>
<td></td>
<td>- Extension into the brain</td>
</tr>
<tr>
<td></td>
<td>- Extension into the subarachnoidal space of the optic nerve</td>
</tr>
<tr>
<td></td>
<td>- Extension to the apex of the orbit</td>
</tr>
<tr>
<td></td>
<td>- Extension to, but not through, the chiasm, or</td>
</tr>
<tr>
<td></td>
<td>- Extension into the brain beyond the chiasm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TX Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td>T0 No evidence of primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>T1a Tumor confined to the retina (no vitreous seeding or significant retinal detachment)</td>
</tr>
<tr>
<td></td>
<td>T1b Any eye in which the largest tumor is less than or equal to 3 mm in height and no tumor is located closer than 1 DD (1.5 mm) to the optic nerve or fovea</td>
</tr>
<tr>
<td></td>
<td>T2 Tumor with contiguous spread to adjacent tissues or spaces (vitreous or subretinal space)</td>
</tr>
<tr>
<td></td>
<td>T2a Minimal tumor spread to vitreous and/or subretinal space. Fine local or diffuse vitreous seeding and/or serous retinal detachment up to total detachment may be present, but no clumps, lumps, snowballs, or avascular masses are allowed in the vitreous or subretinal space. Calcium flecks in the vitreous or subretinal space are allowed. The tumor may fill up to 2/3 the volume of the eye</td>
</tr>
<tr>
<td>T2b</td>
<td>T2c Unsalvable intracranial disease. Tumor fills more than 2/3 of the eye or there is no possibility of visual rehabilitation or one or more of the following are present:</td>
</tr>
<tr>
<td>T3</td>
<td>T4 Extraocular Tumor</td>
</tr>
</tbody>
</table>

(continued on reverse side)
RETINOBLASTOMA

<table>
<thead>
<tr>
<th>Pathologic</th>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>pNX Regional lymph nodes cannot be assessed</td>
</tr>
<tr>
<td>□</td>
<td>PN0 No regional lymph node metastasis</td>
</tr>
<tr>
<td>□</td>
<td>PN1 Regional lymph node metastasis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□</td>
<td>N1 Regional lymph node involvement (preauricular, submandibular, or cervical)</td>
</tr>
<tr>
<td>□</td>
<td>N2 Distant lymph node involvement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ pMX Distant metastasis cannot be assessed</td>
</tr>
<tr>
<td>□ pM0 No distant metastasis</td>
</tr>
<tr>
<td>□ pM1 Distant metastasis</td>
</tr>
<tr>
<td>□ pM1a Bone marrow</td>
</tr>
<tr>
<td>□ pM1b Other sites</td>
</tr>
</tbody>
</table>

- Biopsy of metastatic site performed
- □ Y □ N

- Source of pathologic metastatic specimen

Stage Grouping

No applicable stage grouping for pathological or clinical.

Residual Tumor (R)

- □ RX Presence of residual tumor cannot be assessed
- □ R0 No residual tumor
- □ R1 Microscopic residual tumor
- □ R2 Macroscopic residual tumor

Additional Descriptors

- For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.
- □ m suffix indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- □ y prefix indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- □ r prefix indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- □ a prefix designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

Illustration

Indicate on diagrams and describe exact location and characteristics of tumor.

Physician’s Signature ___________________________ Date ___________________________
Carcinoma of the Lacrimal Gland

INTRODUCTION

The retrospective study of 265 epithelial tumors of the lacrimal gland conducted by the Armed Forces Institute of Pathology has improved our understanding of the histologic classification and clinical behavior of epithelial tumors of the lacrimal gland. Our current understanding of lacrimal gland carcinoma is based on a solid foundation. The historic works of Forrest (1954) and Zimmerman (1962) alleviated confusion by applying to epithelial tumors of the lacrimal gland the histopathologic classification of salivary gland tumors. The histologic classification used is a modification of the World Health Organization (WHO) classification of salivary gland tumors.

ANATOMY

Primary Site. In the normal, fully developed orbit, the lacrimal gland is clinically impalpable and is situated in the lacrimal fossa posterior to the superotemporal orbital rim. The gland is not truly encapsulated. The lacrimal gland is divided into the deep orbital and the superficial palpebral lobes by the levator aponeurosis.

Regional Lymph Nodes. The regional lymph nodes include:

- Preauricular (parotid)
- Submandibular
- Cervical

For pN, histologic examination of a regional lymphadenectomy specimen, if performed, will include one or more regional lymph nodes.

Metastatic Sites. The lung is the most common metastatic site, followed by bone and remote viscera.

RULES FOR CLASSIFICATION

Clinical Staging. A complete physical examination and imaging of the orbit should be performed. Computed tomography and/or magnetic resonance imaging can provide critical diagnostic and staging data.

Pathologic Staging. Complete resection of the mass is indicated. The specimen should be thoroughly sampled for evaluation of surgical margins, type of tumor, and the grade of malignancy. Perineural spread, most characteristic of adenoid cystic carcinoma, frequently results in an underestimation of the true extent of disease.

DEFINITION OF TNM

This classification applies to both clinical and pathologic staging of lacrimal gland carcinomas.

Primary Tumor (T)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TX</td>
<td>Primary tumor cannot be assessed</td>
</tr>
<tr>
<td>T0</td>
<td>No evidence of primary tumor</td>
</tr>
<tr>
<td>T1</td>
<td>Tumor 2.5 cm or less in greatest dimension, limited to the lacrimal gland</td>
</tr>
<tr>
<td>T2</td>
<td>Tumor more than 2.5 cm but not more than 5 cm in greatest dimension, limited to the lacrimal gland</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor invades the periosteum</td>
</tr>
<tr>
<td>T3a</td>
<td>Tumor not more than 5 cm invades the periosteum of the lacrimal gland fossa</td>
</tr>
<tr>
<td>T3b</td>
<td>Tumor more than 5 cm in greatest dimension with periosteal invasion</td>
</tr>
<tr>
<td>T4</td>
<td>Tumor invades the orbital soft tissues, optic nerve, or globe with or without bone invasion; tumor extends beyond the orbit to adjacent structures, including brain</td>
</tr>
</tbody>
</table>
Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1 Regional lymph node metastasis

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis

STAGE GROUPING
No stage grouping is presently recommended.

HISTOPATHOLOGIC TYPE
The major malignant primary epithelial tumors include the following:

Malignant mixed tumor (carcinoma arising in pleomorphic adenoma), which includes adenocarcinoma and adenoid cystic carcinoma arising in a pleomorphic adenoma (benign mixed tumor).

Adenoid cystic carcinoma, arising de novo
Adenocarcinoma, arising de novo
Mucocoeplidemoid carcinoma
Squamous cell carcinoma

HISTOLOGIC GRADE (G)
GX Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated: includes adenoid cystic carcinoma without basaloid (solid) pattern
G3 Poorly differentiated: includes adenoid cystic carcinoma with basaloid (solid) pattern
G4 Undifferentiated

BIBLIOGRAPHY

HISTOLOGIES—CARCINOMA OF THE LACRIMAL GLAND
8010/3 Carcinoma, NOS
8020/3 Carcinoma, undifferentiated, NOS
8021/3 Carcinoma, anaplastic, NOS
8070/3 Squamous cell carcinoma, NOS
8071/3 Squamous cell carcinoma, keratinizing, NOS
8072/3 Squamous cell carcinoma, large cell, nonkeratinizing, NOS
8073/3 Squamous cell carcinoma, small cell, nonkeratinizing
8074/3 Squamous cell carcinoma, spindle cell
8075/3 Squamous cell carcinoma, adenoid
8140/3 Adenocarcinoma, NOS
8200/3 Adenoid cystic carcinoma
8430/3 Mucocoeplidemoid carcinoma
8562/3 Epithelial-myepithelial carcinoma
8940/3 Mixed tumor, malignant, NOS
8941/3 Carcinoma in pleomorphic adenoma
Carcinoma of the Lacrimal Gland

<table>
<thead>
<tr>
<th>Hospital Name/Address</th>
<th>Patient Name/Information</th>
</tr>
</thead>
</table>

Type of Specimen

Tumor Size

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TX: Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0: No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1: Tumor 2.5 cm or less in greatest dimension, limited to the lacrimal gland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2: Tumor more than 2.5 cm but not more than 5 cm in greatest dimension, limited to the lacrimal gland</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3: Tumor invades the periorbitum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3a: Tumor not more than 5 cm invades the periorbitum of the lacrimal gland fossa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3b: Tumor more than 5 cm in greatest dimension with periosteal invasion</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4: Tumor invades the orbital soft tissues, optic nerve, or globe with or without bone invasion; tumor extends beyond the orbit to adjacent structures, including brain</td>
</tr>
</tbody>
</table>

Regional Lymph Nodes (N)

| | | N0: No regional lymph node metastasis |
| | | N1: Regional lymph node metastasis |

Distant Metastasis (M)

| | | M0: No distant metastasis |
| | | M1: Distant metastasis |

Biopsy of metastatic site performed... □ Y □ N Source of pathologic metastatic specimen...

Stage Grouping

No stage grouping is presently recommended.

Histologic Grade (G)

		G0: Grade cannot be assessed
		G1: Well differentiated
		G2: Moderately differentiated: includes adenoid cystic carcinoma without basaloid (solid) pattern
		G3: Poorly differentiated: includes adenoid cystic carcinoma with basaloid (solid) pattern
		G4: Undifferentiated

Residual Tumor (R)

		RX: Presence of residual tumor cannot be assessed
		R0: No residual tumor
		R1: Microscopic residual tumor
		R2: Macroscopic residual tumor

(continued on reverse side)
Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the "m" suffix and "y," "r," and "a" prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix** indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a "y" prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The "y" categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the "r" prefix: rTNM.
- **a prefix** designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

ILLUSTRATION
Indicate on diagram primary tumor and regional nodes involved.

- Lacrimal gland
- Lacrimal sac
- Tarsal plate
- Latar muscle
- Uvea
- Conjunctiva
- Eyelids
- Upper
- Lower
- Orbital roof

Notes
Additional Descriptors
- Lymphatic Vessel Invasion (L)
 - LX Lymphatic vessel invasion cannot be assessed
 - L0 No lymphatic vessel invasion
 - L1 Lymphatic vessel invasion
- Venous Invasion (V)
 - VX Venous invasion cannot be assessed
 - V0 No venous invasion
 - V1 Microscopic venous invasion
 - V2 Macroscopic venous invasion

Physician's Signature ___________________________ Date ________________
INTRODUCTION

The primary malignant neoplasms of the orbit include soft tissue sarcomas (rhabdomyosarcoma, osteogenic sarcoma, leiomyosarcoma, etc.), lymphoproliferative tumors (lymphoma, plasma cell tumors, etc.), and melanocytic tumors.

ANATOMY

Primary Site. The orbital sarcomas originate from striated muscle (rhabdomyosarcoma), smooth muscle (leiomyosarcoma), cartilage (chondrosarcoma), bone (osteogenic sarcoma), fibroconnective tissue (fibrosarcoma, fibrous histiocytoma), vascular tissues (angiosarcoma, hemangiopericytoma), peripheral nerve (Schwannoma, paraganglioma), and optic nerve tissues (glioma, meningioma).

Regional Lymph Nodes. Although there is no organized lymphatic network behind the orbital septum, the drainage of the orbit takes place into the submandibular, parotid, and cervical lymph nodes through vascular anastomosis. The venous drainage of the orbit is primarily into the cavernous sinus. For pN, the examination of a regional lymphadenectomy specimen would ordinarily include one or more lymph node(s).

Local Invasion. The malignancy of the orbit may directly extend into adjacent structures. Therefore, local tumor invasion (T4) would include extension to involve the eyelid, globe, temporal fossa, nasal cavity and paranasal sinuses, and central nervous system.

Metastatic Sites. Metastatic spread occurs by the bloodstream and lymphatics.

RULES FOR CLASSIFICATION

Clinical Staging. Clinical classification should be based on the symptoms and signs related to loss of vision and visual field, degree of global displacement and loss of extraocular motility, and degree of compressive optic neuropathy. Diagnostic tests should include ultrasonography, computed tomography, magnetic resonance imaging, and other imaging procedures when indicated.

Pathologic Staging. The nature of the histopathology specimen (fine-needle aspiration biopsy, excisional biopsy, lumpectomy, or total excision) should be noted. Pathologic classification is based on the specific histopathology of the tumor, its differentiation (grade), and the extent of removal (evaluation of its excisional margins). In total excision specimens, evaluation of the surgical margins should be mandatory.

DEFINITION OF TNM

Primary Tumor (T)
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Tumor 15 mm or less in greatest dimension
T2 Tumor more than 15 mm in greatest dimension without invasion of globe or bony wall
T3 Tumor of any size with invasion of orbital tissues and/or bony walls
T4 Tumor invasion of globe or peri orbital structure, such as eyelids, temporal fossa, nasal cavity and paranasal sinuses, and/or central nervous system

Regional Lymph Nodes (N)
NX Regional lymph nodes cannot be assessed
N0 No regional lymph node metastasis
N1 Regional lymph node metastasis

Distant Metastasis (M)
MX Distant metastasis cannot be assessed
M0 No distant metastasis
M1 Distant metastasis
STAGE GROUPING

No stage grouping is presently recommended.

HISTOPATHOLOGIC TYPE

Malignancies of the orbit primarily include a broad spectrum of malignant soft tissue tumors.

HISTOLOGIC GRADE (G)

GX Grade cannot be assessed
G1 Well differentiated
G2 Moderately differentiated
G3 Poorly differentiated
G4 Undifferentiated

BIBLIOGRAPHY

HISTOLOGIES—SARCOMA OF THE ORBIT

8800/3 Sarcoma, NOS
8801/3 Spindle cell sarcoma
8802/3 Giant cell sarcoma
8803/3 Small cell sarcoma
8804/3 Epithelioid sarcoma
8805/3 Undifferentiated sarcoma
8806/3 Desmoplastic small round cell tumor
8810/3 Fibrosarcoma, NOS
8811/3 Fibromyxosarcoma
8812/3 Periosteal fibrosarcoma
8813/3 Fascial fibrosarcoma
8814/3 Infantile fibrosarcoma
8815/3 Solitary fibrous tumor, malignant
8830/3 Malignant fibrous histiocytoma
8840/3 Myxosarcoma
8850/3 Liposarcoma, NOS
8851/3 Liposarcoma, well differentiated
8852/3 Myxoid liposarcoma
8853/3 Round cell liposarcoma
8854/3 Pleomorphic liposarcoma
8855/3 Mixed liposarcoma
8857/3 Fibroblastic liposarcoma
8858/3 Differrentiated liposarcoma
8890/3 Leiomyosarcoma, NOS
8891/3 Epithelioid leiomyosarcoma
8896/3 Myxoid leiomyosarcoma
8900/3 Rhabdomyosarcoma, NOS
8901/3 Pleomorphic rhabdomyosarcoma, adult type
8902/3 Mixed type rhabdomyosarcoma
8910/3 Embryonal rhabdomyosarcoma, NOS
8912/3 Spindle cell rhabdomyosarcoma
8920/3 Alveolar rhabdomyosarcoma
8963/3 Malignant rhabdoid tumor
9010/3 Synovial sarcoma, NOS
9014/3 Clear cell sarcoma, NOS
9050/3 Mesothelioma, malignant
9120/3 Hemangiosarcoma
9130/3 Hemangioendothelioma, malignant
9133/3 Epithelioid hemangioendothelioma
9140/3 Kaposi’s sarcoma
9150/3 Hemangiopericytoma, malignant
9180/3 Osteosarcoma, NOS
9181/3 Chondroblastic osteosarcoma
9182/3 Fibroblastic osteosarcoma
9184/3 Osteosarcoma in Paget disease of bone
9220/3 Chondrosarcoma, NOS
9231/3 Myxoid chondrosarcoma
9240/3 Mesenchymal chondrosarcoma
9243/3 Dedifferentiated chondrosarcoma
9250/3 Giant cell tumor of bone, malignant
9260/3 Ewing sarcoma
9370/3 Chordoma, NOS
9490/3 Ganglioneuroblastoma
9500/3 Neuroblastoma, NOS
9501/3 Medulloepithelioma, NOS
9502/3 Teratoid medulloepithelioma
9503/3 Neuroepithelioma, NOS
DEFINITIONS

<table>
<thead>
<tr>
<th>Clinical</th>
<th>Pathologic</th>
<th>Primary Tumor (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TX Primary tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T0 No evidence of primary tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T1 Tumor 15 mm or less in greatest dimension</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T2 Tumor more than 15 mm in greatest dimension without invasion of globe or bony wall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T3 Tumor of any size with invasion of orbital tissues and/or bony walls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T4 Tumor invasion of globe or periorbital structure, such as eyelids, temporal fossa, nasal cavity and paranasal sinuses, and/or central nervous system</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Regional Lymph Nodes (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distant Metastasis (M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Stage Grouping

No stage grouping is presently recommended.

Histologic Grade (G)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GX Grade cannot be assessed</td>
</tr>
<tr>
<td></td>
<td>G1 Well differentiated</td>
</tr>
<tr>
<td></td>
<td>G2 Moderately differentiated</td>
</tr>
<tr>
<td></td>
<td>G3 Poorly differentiated</td>
</tr>
<tr>
<td></td>
<td>G4 Undifferentiated</td>
</tr>
</tbody>
</table>

Residual Tumor (R)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RX Presence of residual tumor cannot be assessed</td>
</tr>
<tr>
<td></td>
<td>R0 No residual tumor</td>
</tr>
<tr>
<td></td>
<td>R1 Microscopic residual tumor</td>
</tr>
<tr>
<td></td>
<td>R2 Macroscopic residual tumor</td>
</tr>
</tbody>
</table>

(continued on reverse side)
Additional Descriptors
For identification of special cases of TNM or pTNM classifications, the “m” suffix and “y,” “r,” and “a” prefixes are used. Although they do not affect the stage grouping, they indicate cases needing separate analysis.

- **m suffix** indicates the presence of multiple primary tumors in a single site and is recorded in parentheses: pT(m)NM.
- **y prefix** indicates those cases in which classification is performed during or following initial multimodality therapy. The cTNM or pTNM category is identified by a “y” prefix. The ycTNM or ypTNM categorizes the extent of tumor actually present at the time of that examination. The “y” categorization is not an estimate of tumor prior to multimodality therapy.
- **r prefix** indicates a recurrent tumor when staged after a disease-free interval, and is identified by the “r” prefix: rTNM.
- **a prefix** designates the stage determined at autopsy: aTNM.

Prognostic Indicators (if applicable)

Illustration
Indicate on diagram primary tumor and regional nodes involved.

- **Lacrimal gland**
- **Lacrimal sac**
- **Tarsal plate**
- **Leverator muscle**
- **Orbital roof**
- **Uvea**
- **Conjunctiva**
- **Eyelids Upper**
- **Lower**
PART XI

Central Nervous System
Brain and Spinal Cord

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>C70.0</td>
<td>Cerebral meninges</td>
<td>Meningioma</td>
</tr>
<tr>
<td>C71.0</td>
<td>Cerebrum</td>
<td>Astrocytoma</td>
</tr>
<tr>
<td>C71.1</td>
<td>Frontal lobe</td>
<td>Anaplastic astrocytoma</td>
</tr>
<tr>
<td>C71.2</td>
<td>Temporal lobe</td>
<td>Glioblastoma</td>
</tr>
<tr>
<td>C71.3</td>
<td>Parietal lobe</td>
<td>Oligodendroglioma</td>
</tr>
<tr>
<td>C71.4</td>
<td>Occipital lobe</td>
<td>Gangliogioma</td>
</tr>
<tr>
<td>C71.5</td>
<td>Ventricle NOS</td>
<td>Ependymoma</td>
</tr>
<tr>
<td>C71.6</td>
<td>Cerebellum NOS</td>
<td>Central neurocytoma</td>
</tr>
<tr>
<td>C71.7</td>
<td>Brain stem</td>
<td>Pilocytic astrocytoma</td>
</tr>
<tr>
<td>C71.8</td>
<td>Overlapping lesion of brain</td>
<td>Medulloblastoma</td>
</tr>
<tr>
<td>C71.9</td>
<td>Brain NOS</td>
<td>Brain stem glioma</td>
</tr>
<tr>
<td>C72.0</td>
<td>Spinal cord</td>
<td>Any, if location is not specified</td>
</tr>
<tr>
<td>C72.1</td>
<td>Cauda equina</td>
<td>Any, involving more than one site</td>
</tr>
<tr>
<td>C72.2</td>
<td>Olfactory nerve</td>
<td>Astrocytoma, ependymoma</td>
</tr>
<tr>
<td>C72.3</td>
<td>Optic nerve</td>
<td>Ependymoma</td>
</tr>
<tr>
<td>C72.4</td>
<td>Acoustic/vestibular nerve</td>
<td>Esthesioneuroblastoma</td>
</tr>
<tr>
<td>C72.5</td>
<td>Cranial nerve, NOS</td>
<td>Optic glioma</td>
</tr>
<tr>
<td>C72.6</td>
<td>Overlapping lesion of brain and central nervous system</td>
<td>Vestibular schwannoma</td>
</tr>
<tr>
<td>C72.9</td>
<td>Nervous system, NOS</td>
<td>Schwannoma</td>
</tr>
<tr>
<td>C75.1</td>
<td>Pituitary gland</td>
<td>PNET, CNS lymphoma</td>
</tr>
</tbody>
</table>

SUMMARY OF CHANGES
- Central Nervous System Tumors continue to have no TNM designation.

INTRODUCTION

Attempts at developing a TNM-based classification and staging system for tumors of the central nervous system (CNS) have largely been unsuccessful. Previous editions of this manual had proposed a system that was used with poor compliance and proved not to be particularly useful as a predictor of outcome in clinical trials for the management of patients with primary CNS tumors. The reasons for this are several and have to do with the fact that tumor size is significantly less relevant than tumor histology and the location of the tumor, so that the T classification is less pertinent than the biologic nature of the tumor tissue itself. Because the brain and spinal cord have no lymphatics, the N classification does not apply at all, as there are no lymph nodes that can be identified in either classification or staging. An M classification is not pertinent to the majority of neoplasms that affect the central nervous system, because most patients with tumors of the central nervous system do not live long enough to develop metastatic disease (except for some pediatric tumors that tend to "seed" through the cerebrospinal fluid spaces).

Many important studies have been done regarding the most common tumors affecting the brain and spinal cord, and a variety of prognostic factors have been identified. Unfortunately, these factors do not easily fall into the usual categories that have traditionally been part of the American Joint Committee on Cancer (AJCC) TNM system.

For those reasons, it was the recommendation of the CNS Tumor Task Force that a formal classification and staging system not be attempted at this time. This chapter, however, will attempt to highlight what is known about prognostic factors in tumors of the central nervous system. (Table 47.1).
TABLE 47.1. Prognostic factors in CNS tumors

<table>
<thead>
<tr>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Histology</td>
</tr>
<tr>
<td>Pathologic grade and accuracy of diagnosis</td>
</tr>
<tr>
<td>Presence and extent of necrosis</td>
</tr>
<tr>
<td>Presence of gemistocytes</td>
</tr>
<tr>
<td>Proliferative fraction</td>
</tr>
<tr>
<td>Presence of oligodendroglial component</td>
</tr>
<tr>
<td>Presence or absence of cells in mitosis</td>
</tr>
<tr>
<td>Age of patient</td>
</tr>
<tr>
<td>Functional neurologic status</td>
</tr>
<tr>
<td>Karnofsky Performance Score</td>
</tr>
<tr>
<td>Symptom presentation and duration before diagnosis</td>
</tr>
<tr>
<td>Presentation with seizure, long duration are favorable prognostic factors</td>
</tr>
<tr>
<td>Location of tumor</td>
</tr>
<tr>
<td>Unifocal or multifocal</td>
</tr>
<tr>
<td>Primary or recurrent tumor</td>
</tr>
<tr>
<td>Extent of resection</td>
</tr>
<tr>
<td>Biopsy, subtotal, radical removal</td>
</tr>
<tr>
<td>Metastatic spread</td>
</tr>
<tr>
<td>CNS or extraneural</td>
</tr>
<tr>
<td>Patterns of enhancement on imaging studies</td>
</tr>
</tbody>
</table>

PROGNOSTIC FACTORS IN CNS TUMORS

Tumor Histology. The histology of tumors that affect the brain and spinal cord is by far the most important variable with regard to prognosis, and in many cases it determines the treatment modalities that are employed. The latest World Health Organization (WHO) classification system has combined tumor nomenclature with an associated grading system, so the actual histologic diagnosis directly correlates with the histologic grade of the tumor. This should clarify some of the inconsistencies that existed in the past when a number of different grading systems, each slightly different from the others, were used. The most common histologies for brain and spinal cord tumors are given in Table 47.2, along with the tumor grade for each different diagnostic category. Note: The histologic grade code used for staging purposes is not the same code that is assigned as the differentiation code in the sixth digit of the ICD-O morphology code.

Age of the Patient. Most retrospective outcome studies of brain tumor therapy show that the age of the patient at the time of diagnosis is one of the most powerful predictors of outcome. This fact holds true for the gliomas, which are the most common primary brain tumors, and for most other tumors that affect the adult population, including most metastatic tumors to the brain. There are, however, some childhood tumors that have a very poor prognosis, are inherently high grade, and rapidly progress to a fatal outcome. Some metastatic tumors, such as melanoma, occur in younger patients and also violate this general statement with regard to the specific effect of age on prognosis.

Extent of Tumor Resection. In patients who are treated surgically for tumors of the central nervous system, the extent of resection is often directly correlated with the outcome. This is a less powerful predictor than tumor histology or age, but most retrospective studies confirm that extent of removal is positively correlated with survival. For this reason, documentation of whether a surgical tumor removal is “gross total,” “subtotal,” or “biopsy only,” is useful in determining future therapy and prognosis. Any staging system to be developed for CNS tumors should take into account, in a systematic and clearly documented fashion, extent of removal or tumor residual.

Tumor Location. Because of the differential importance of various areas of the brain, the location of a given tumor affecting the brain can have a major impact on the functional outcome, survival, and nature of therapy. The location codes available for tumors affecting the central nervous system in the ICD-O and ICD-10 manuals are generally satisfactory, and they offer the advantage of consistency to the records of patients with CNS tumors.

Functional Neurologic Status. Another important prognostic factor in most retrospective studies of CNS tumors is the functional neurologic status of the patient at the time of diagnosis. This traditionally has been estimated using the Karnofsky Performance Scale, which is reproducible, is well known by most investigators, and is in common use for stratification of patients entering clinical trials for the treatment of brain tumors. The outcome and prognosis of patients correlate fairly well with functional neurologic status, and once again, any staging system should include a validated and reliable measure of this parameter. Other measures of outcome, both cognitive and functional, are increasingly used in studies of CNS tumors.

Metastatic Spread. Tumors affecting the central nervous system rarely develop extraneural metastases, probably because of inherent biologic characteristics of these tumors, and also because the brain does not have a well-developed lymphatic drainage system. In addition, many patients with tumors of the central nervous system have a short life expectancy, which further limits the likelihood of metastatic spread. Certain tumors do spread through cerebrospinal fluid (CSF) pathways, and such spread has a major impact on survival. Dissemination through the CSF pathway is a hallmark of certain childhood tumors, many of which carry a poor prognosis; this phenomenon, however, is rarely seen in adult patients with the more common CNS tumors. Primary lymphomas of the central nervous system may spread along the craniospinal axis and sometimes exhibit intraocular dissemination. Although metastatic spread is of importance in certain instances, its overall impact in staging is relatively minor. The M category, however, should be part of any classification and staging system that is developed in the future for CNS tumors, and it should differentiate between extra-
<table>
<thead>
<tr>
<th>Tumors of Neuroepithelial Tissue</th>
<th>Neuroblastomas of the adrenal gland and sympathetic nervous system</th>
<th>Papillary</th>
<th>9538/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrocytic tumors</td>
<td>Pineal parenchymal tumors</td>
<td>Rhabdoid</td>
<td>9538/3</td>
</tr>
<tr>
<td>Diffuse astrocytoma</td>
<td>Pineocytoma</td>
<td>Anaplastic meningioma</td>
<td>9530/3</td>
</tr>
<tr>
<td>Fibrillary astrocytoma</td>
<td>Pineoblastoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protoplasmic astrocytoma</td>
<td>Pineal parenchymal tumor of intermediate differentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gemistocytic astrocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplastic astrocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glioblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Giant cell glioblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliosarcoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilocytic astrocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleomorphic xanthoastrocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subependymal giant cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>astrocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligodendroglial tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligodendroglioma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplastic oligodendroglioma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed gliomas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oligoastrocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplastic oligoastrocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymal tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ependymoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cellular</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papillary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanyctic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplastic ependymoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myxopapillary ependymoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subependymoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliomatous tumors of uncertain origin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astroblastoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gliomatosis cerebri</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chordoid glioma of the third ventricle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuronal and mixed neuronal-gliat tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gangliocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysplastic gangliocytoma of cerebellum (Hermitte-Duclos)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desmoplastic infantile astrocytoma/gangliocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysembryoplastic neuroepithelial tumor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ganglioglioma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaplastic ganglioglioma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Central neurocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cerebellar liponeurocytoma</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paraganglioma of the filament terminale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neuroblastic tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olfactory neuroblastsma (astheno-neuroblastsma)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olfactory neuroepitheloma</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 'Morphology code of the International Classification of Diseases for Oncology (ICD-O) and the Systematized Nomenclature of Medicine (SNOMED). Behavior is coded 0 for benign tumors, 1 for low or uncertain malignant potential or borderline malignancy, 2 for in situ lesions, and 3 for malignant tumors. Source: P. Kleihues and W. Cavenee (Eds.), World Health Organization Classification of Tumours: Pathology and Genetics. Tumours of the Nervous System (Lyon: International Agency for Research on Cancer, 2000).
TABLE 47.3. Prognostic biogenetic markers (under investigation)

Proliferation index—Ki-67(MIB-1), PCNA, bcl-2 expression, cyclin-D1 expression
DNA studies—flow cytometry, DNA index, BrdULI, comparative genomic hybridization
Activation of cellular oncogenes—ras, N-myc, C-myc, pescadillo
Inactivation of tumor suppressor genes—p53, p16(CDKN2A), Rb, PTEN, DMBT1, MDM2, NF2
Allelic loss / loss of heterozygosity (LOH)—chromosomes 10, 22q, 19q, 17p
Cytokine dysregulation—CDK4, EGFR, VEGF, PKC
Chromosomal aberrations—chromosomes 1, 9, 10, 11, 17, 19, and 22
Other molecular observations—telomerase activity and hTERT expression, DNA methyltransferase, double minutes, AgNOR instability

neural metastasis and metastasis within the CNS and CSF pathways.

BRAIN TUMOR SURVIVAL DATA

Data are available from the SEER program for current survival statistics for “brain tumors,” a category that includes malignant primary brain tumors (gliomas). For this relatively ill-defined group of patients, there are 17,200 new cases estimated for 2001. Five-year survivals are 30% in adults and 64% in children.

Excellent observational data for malignant gliomas (glioblastomas and malignant [grade 3] gliomas) are available from the Glioma Outcome Project, evaluating 788 patients accrued from 1997 through 2000. The 50% survival for glioblastoma multiforme (GBM) is 10.6 months, and the 96-week survival is 10%. For grade 3 gliomas, 70% have survived 96 weeks. Approximately 11% of the patients were enrolled in clinical trials.

PROGNOSTIC BIOGENETIC MARKERS (UNDER INVESTIGATION)

The field of molecular neuropathology has provided us with a number of potential biogenetic markers that may be useful in staging CNS tumors and in making recommendations for therapy. The discovery of the pivotal role of oncogenes and of the loss of tumor suppressor genes in the tumorigenesis of CNS tumors has led to a flurry of activity that may prove quite fruitful in providing valid biologic markers in these difficult tumors. Table 47.3 provides a glimpse of some of the current markers and techniques under investigation. It is hoped that ways will be found to apply these methods of scientific analysis of tumor growth potential to predict survival more effectively than is possible today.

BIBLIOGRAPHY

PART XII
Lymphoid Neoplasms
Lymphoid Neoplasms

SUMMARY OF CHANGES

- The Hodgkin lymphoma and non-Hodgkin lymphoma chapters have been combined into one chapter titled “Lymphoid Neoplasms.”

INTRODUCTION

Lymphoid malignancies are a diverse and sometimes confusing group of disorders. These malignancies share derivation from B-cells, T-cells, and NK-cells, but they have a wide range of presentations, clinical course, and response to therapy. The incidence of lymphoid malignancies is significant and increasing. Non-Hodgkin lymphomas occur in approximately 55,000 new individuals each year and have been increasing rapidly in incidence over the past several decades. Hodgkin lymphoma occurs in approximately 8,000 new individuals each year in the United States and seems stable in incidence. Approximately 13,000 new cases of multiple myeloma and up to 15,000 new cases of lymphoid leukemias occur annually in the United States.

PATHOLOGY

Lymphoid neoplasms include Hodgkin disease (Hodgkin lymphoma) and B-cell, T-cell, and NK-cell (natural killer cell) neoplasms (collectively known as non-Hodgkin lymphomas [NHL] and lymphoid leukemias). Traditionally, classifications have distinguished between “lymphomas”—neoplasms that typically present with an obvious tumor or mass of lymph nodes or extranodal sites—and “leukemias”—neoplasms that typically involve the bone marrow and peripheral blood, without tumor masses. However, we now know that many B- and T/NK-cell neoplasms may have both tissue masses and circulating cells, either in the same patient or from one patient to another. Thus it is artificial to call them different diseases, when in fact they are just different stages or phases of the same disease. For this reason, we now refer to these diseases as lymphoid neoplasms rather than as lymphomas or leukemias, reserving the latter terms for the specific clinical presentation. In the current classification of lymphoid neoplasms, diseases that typically produce tumor masses are called lymphomas, those that typically have only circulating cells are called leukemias, and those that often have both solid and circulating phases are designated lymphoma/leukemia. Finally, plasma cell neoplasms, including multiple myeloma and plasmacytoma, have typically not been considered “lymphomas,” but plasma cells are part of the B-cell lineage, and thus these tumors are B-cell neoplasms, which are now included in the classification of lymphoid neoplasms.

Lymphoid neoplasms are malignancies of lymphoid cells. Lymphoid cells include lymphoblasts, lymphocytes, follicle center cells (centrocytes and centroblasts), immunoblasts, and plasma cells. These cells are responsible for immune responses to infections. Immune responses involve recognition by lymphocytes of foreign molecules, followed by proliferation and differentiation to generate either specific cytotoxic cells (T or NK—natural killer—cells) or antibodies (B-cells and plasma cells). Lymphoid cells are normally found in greatest numbers in lymph nodes and in other lymphoid tissues such as Waldeyer’s ring (which includes the palatine and lingual tonsils and adenoids), the thymus, Peyer’s patches of the small intestine, the spleen, and the bone marrow. Lymphocytes also circulate in the peripheral blood and are found in small numbers in almost every organ of the body, where they either wait to encounter antigens or carry out specific immune reactions. Lymphoid neoplasms may occur in any site to which lymphocytes normally travel. Because lymphocytes normally do travel—in contrast to epithelial cells, for example—it is often impossible to determine the “primary site” of a lymphoid neoplasm or to use a staging scheme that was developed for epithelial cancers, such as the TNM scheme.

For the purposes of coding and staging, lymph nodes, Waldeyer’s ring, and spleen are considered nodal or lymphatic sites. Extranodal or extralymphatic sites include the bone marrow, the gastrointestinal tract, skin, bone, central nervous system, lung, gonads, ocular adnexae (conjunctiva, lachrymal glands, and orbital soft tissue), liver, kidneys and uterus. Hodgkin lymphoma rarely presents in an extranodal site, but about 25% of non-Hodgkin lymphomas are extranodal at presentation. The frequency of extranodal presentation varies dramatically among different lymphomas, however, with some (mycosis fungoides and MALT lymphomas) being virtually always extranodal and some (follicular lymphoma, B-cell small lymphocytic lymphoma) seldom being extranodal, except for bone marrow involvement.
CLASSIFICATION OF LYMPHOID NEOPLASMS

Many different classification schemes have been proposed for lymphoid neoplasms, and this has led to much confusion on the part of both pathologists and oncologists. Until recently in the United States, a classification called the Working Formulation was used. This scheme had the advantage of being simple, with only 10 categories, and not requiring any special studies such as immunophenotyping or genetic studies. In addition, it provided simple clinical groupings for determining the approach to treatment (low, intermediate, and high clinical grades). Since it was introduced in 1982, advances in understanding of the immune system and of the lymphoid neoplasms have led to the recognition of many new categories of lymphoid neoplasms and the development of better methods for diagnosis and classification—as well as for treatment—and the Working Formulation has become obsolete. In 1994 the International Lymphoma Study Group (ILSG) introduced a new classification, called the Revised European-American Classification of Lymphoid Neoplasms (REAL), which incorporated both morphology, new information such as immunophenotype and genetic features, and clinical features, to define over 25 different categories of lymphoid neoplasms, including Hodgkin lymphoma. More recently, the World Health Organization (WHO) decided to update its Classification of Diseases of the Hematopoietic and Lymphoid Systems and has adopted the REAL classification for lymphoid neoplasms (the WHO classification also includes myeloid and histiocytic neoplasms). The REAL/WHO classification is now the standard for clinical trials in lymphoma (Table 48.1).

The REAL/WHO classification is a list of distinct disease entities, which are defined by a combination of morphology, immunophenotype, and genetic features and which have distinct clinical features. The relative importance of each of these features varies among diseases, and there is no one "gold standard." Morphology remains the first and most basic approach and is sufficient for both diagnosis and classification in many typical cases of lymphoma. Immunophenotyping and—particularly—molecular genetic studies are not needed in all cases, but they are very important in some diseases, are useful in difficult cases, and improve interobserver reproducibility. As mentioned above, the classification includes all lymphoid neoplasms: Hodgkin lymphoma, non-Hodgkin lymphomas, lymphoid leukemias, and plasma cell neoplasms. Both lymphomas and lymphoid leukemias are included, because both solid and circulating phases are present in many lymphoid neoplasms, and drawing a distinction between them is artificial. Thus, B-cell chronic lymphocytic leukemia and B-cell small lymphocytic lymphoma are simply different manifestations of the same neoplasm, as are lymphoblastic lymphomas and acute lymphoblastic leukemias. In addition, Hodgkin lymphoma and plasma cell myeloma are now recognized as lymphoid neoplasms of B-lineage and therefore belong in a compilation of lymphoid neoplasms.

<table>
<thead>
<tr>
<th>TABLE 48.1. WHO classification of lymphoid neoplasms</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-cell Neoplasms</td>
</tr>
<tr>
<td>Precursor B-cell neoplasm</td>
</tr>
<tr>
<td>• Precursor B-lymphoblastic leukemia/lymphoma (precursor B-cell acute lymphoblastic leukemia)</td>
</tr>
<tr>
<td>Mature (peripheral) B-cell neoplasms</td>
</tr>
<tr>
<td>• B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma</td>
</tr>
<tr>
<td>• B-cell prolymphocytic leukemia</td>
</tr>
<tr>
<td>• Lymphoplasmacytic lymphoma</td>
</tr>
<tr>
<td>• Splenic marginal zone B-cell lymphoma (with or without villous lymphocytes)</td>
</tr>
<tr>
<td>• Hairy cell leukemia</td>
</tr>
<tr>
<td>• Plasma cell myeloma/plasmacytoma</td>
</tr>
<tr>
<td>• Extranodal marginal zone B-cell lymphoma of MALT type</td>
</tr>
<tr>
<td>• Nodal marginal zone B-cell lymphoma (with or without monocytoid B cells)</td>
</tr>
<tr>
<td>• Follicular lymphoma</td>
</tr>
<tr>
<td>• Mantle cell lymphoma</td>
</tr>
<tr>
<td>• Diffuse large B-cell lymphoma</td>
</tr>
<tr>
<td>• Burkitt lymphoma/Burkitt cell leukemia</td>
</tr>
<tr>
<td>T-cell and NK-cell Neoplasms</td>
</tr>
<tr>
<td>Precursor T-cell neoplasm</td>
</tr>
<tr>
<td>• Precursor T-lymphoblastic lymphoma/leukemia (precursor T-cell acute lymphoblastic leukemia)</td>
</tr>
<tr>
<td>Mature (peripheral) T/NK-cell neoplasms</td>
</tr>
<tr>
<td>• T-cell prolymphocytic leukemia</td>
</tr>
<tr>
<td>• T-cell granular lymphocytic leukemia</td>
</tr>
<tr>
<td>• Aggressive NK-cell leukemia</td>
</tr>
<tr>
<td>• Adult T-cell lymphoma/leukemia (HTLV1 +)</td>
</tr>
<tr>
<td>• Extranodal NK/T-cell lymphoma, nasal type</td>
</tr>
<tr>
<td>• Enteropathy-type T-cell lymphoma</td>
</tr>
<tr>
<td>• Hepatosplenic y T-cell lymphoma</td>
</tr>
<tr>
<td>• Subcutaneous panniculitis-like T-cell lymphoma</td>
</tr>
<tr>
<td>• Mycosis fungoides/Sezary syndrome</td>
</tr>
<tr>
<td>• Anaplastic large cell lymphoma, T/null cell, primary cutaneous type</td>
</tr>
<tr>
<td>• Peripheral T-cell lymphoma, not otherwise characterized</td>
</tr>
<tr>
<td>• Angioimmunoblastic T-cell lymphoma</td>
</tr>
<tr>
<td>• Anaplastic large cell lymphoma, T/null cell, primary systemic type</td>
</tr>
</tbody>
</table>

Major Categories of Hodgkin Lymphoma

Nodular lymphocyte predominance Hodgkin lymphoma (NLPHL)
Classic Hodgkin lymphoma (CHL)
Nodular sclerosis Hodgkin lymphoma (NSHL)
Mixed cellularity Hodgkin lymphoma (MCHL)
Lymphocyte rich classic Hodgkin lymphoma (LRCHL)
Lymphocyte depletion Hodgkin lymphoma (LDHL)

T-cell Neoplasms. T-cell neoplasms, other than precursor T-lymphoblastic lymphoma/leukemia and mycosis fungoides, are uncommon in the United States and Europe, accounting for 10%-15% of all non-Hodgkin lymphomas (Table 48.1).
NON-HODGKIN LYMPHOMAS

All newly diagnosed patients with non-Hodgkin lymphomas should have formal documentation of the anatomic disease extent prior to the initial therapeutic intervention; that is, clinical stage must be assigned and recorded. Patients with recurrent disease should not have clinical stage assigned again at the time of relapse, although recording of the anatomic disease extent at the time of recurrence is recommended. The retreatment classification (see the section "General Rules of the TNM System") using "r-stage" may be used for this purpose. However, the clinical stage at diagnosis should not be confused with the "r-stage."

The current anatomic staging classification for non-Hodgkin lymphoma, known as the Ann Arbor classification, was originally developed for Hodgkin lymphoma, and its use was subsequently extended to non-Hodgkin lymphoma. The pattern of disease in Hodgkin lymphoma varies considerably from that encountered in non-Hodgkin lymphoma. Consequently, significant difficulties arose when the Ann Arbor classification was applied to non-Hodgkin lymphoma. However, the Ann Arbor classification has been used in Hodgkin lymphoma and non-Hodgkin lymphoma for over 30 years. It has been accepted as the best means of describing the anatomic disease extent and has been found useful as a universal system for a variety of lymphomas. The AJCC and UICC have adopted the Ann Arbor classification as the official system for classifying the anatomic extent of disease in Hodgkin lymphoma and non-Hodgkin lymphoma.

STAGING

Stage I: Involvement of a single lymph node region (I); or localized involvement of a single extralymphatic organ or site in the absence of any lymph node involvement (IE) (rare in Hodgkin lymphoma).

Stage II: Involvement of two or more lymph node regions on the same side of the diaphragm (II); or localized involvement of a single extralymphatic organ or site in association with regional lymph node involvement with or without involvement of other lymph node regions on the same side of the diaphragm (IIE). The number of regions involved may be indicated by a subscript, as in, for example, IIa.

Stage III: Involvement of lymph node regions on both sides of the diaphragm (III), which also may be accompanied by extralymphatic extension in association with adjacent lymph node involvement (IIE) or by involvement of the spleen (IIIS) or both (IIIES).

Stage IV: Diffuse or disseminated involvement of one or more extralymphatic organs, with or without associated lymph node involvement; or isolated extralymphatic organ involvement in the absence of adjacent regional lymph node involvement, but in conjunction with disease in distant site(s). Any involvement of the liver or bone marrow, or nodular involvement of the lung(s). The location of Stage IV disease is identified further by specifying the site according to the notations listed on page 400.

Although anatomic disease extent is one prognostic factor in non-Hodgkin lymphoma, the prognostic factors that form the International Prognostic Index for non-Hodgkin lymphoma (Table 48.4) should be used for treatment decisions along with histologic subtype of lymphoma. Additional factors that have been reported to affect the outcome in preliminary studies include tumor bulk, beta-2 microglobulin, and S-phase fraction.

ANATOMY

The Ann Arbor staging system is further described in the section on Hodgkin lymphoma. It is proposed that for non-Hodgkin lymphoma, the E designation should indicate the presentation of lymphoma in extranodal sites and the lack of an E designation should indicate lymphomas presenting in lymph nodes.

Clinical Staging. Clinical staging includes the careful recording of medical history and physical examination; imaging of chest, abdomen, and pelvis; blood chemistry determination; complete blood count; and bone marrow biopsy (Table 48.2).

TABLE 48.2. Recommendation for the diagnostic evaluation of patients with lymphoma

A. Mandatory procedures
 1. Biopsy, with interpretation by a qualified pathologist
 2. History, with special attention to the presence and duration of fever, night sweats, and unexplained loss of 10% or more of body weight in the previous 6 months
 3. Physical examination
 4. Laboratory tests
 a. Complete blood cell count and platelet count
 b. Erythrocyte sedimentation rate
 c. Liver function tests
 5. Radiographic examinations
 a. Chest X-ray
 b. CT of chest, abdomen, and pelvis
 c. Gallium scan
 6. Bone marrow biopsy

B. Ancillary procedures
 1. Laparotomy and splenectomy if decisions regarding management are likely to be influenced
 2. Liver biopsy (needle), if there is a strong clinical indication of hepatic involvement
 3. Radiosotopic bone scans, in selected patients with bone pain
 4. CT of head and neck in extranodal or nodal presentation to define disease extent
 5. Gastroscopy and/or GI series in patients with GI presentations
 6. MRI spine in patients with suspected spinal involvement
 7. CSF cytology in patients with Stage IV disease and bone marrow involvement, testis involvement, or parameningeal involvement
The basic staging investigation in non-Hodgkin lymphoma includes physical examination, complete blood count, LDH, liver function tests, chest X-ray, CT scan of abdomen and pelvis, and bone marrow biopsy. CT scans of the neck, thorax, abdomen, and pelvis are commonly obtained. In patients presenting with extranodal lymphoma, imaging of the presenting area with either CT or MRI is required to define local disease extent. In patients at high risk for occult CNS involvement, CSF cytology is performed. Gallium scan is commonly used to determine extent of disease and gallium avidity. Biopsies of any suspicious lesions may also be conducted as part of the initial clinical staging, especially if this would alter stage assignment. Bone marrow biopsy is a standard clinical staging investigation. However, liver biopsy is not required as part of clinical staging, unless abnormal liver function occurs in the presence of otherwise limited stage disease.

Pathologic Staging. The use of the term pathologic staging is reserved for patients who undergo staging laparotomy with an explicit intent to assess the presence of abdominal disease or to define histologic microscopic disease extent in the abdomen. Staging laparotomy and pathologic staging have been essentially abandoned as useful procedures.

Definition of Lymph Node Regions. The staging classification for non-Hodgkin lymphoma uses the term lymph node region. The lymph node regions were defined at the Rye symposium in 1965 and have been used in the Ann Arbor classification. They are not based on any physiological principles but, rather, have been agreed upon by convention. The currently accepted classification of core nodal regions is as follows: right cervical (including cervical, supraclavicular, occipital, and preauricular lymph nodes) nodes and left cervical nodes, right axillary, left axillary, right infraclavicular, and left infraclavicular lymph nodes, mediastinal lymph nodes, hilar lymph nodes, para-aortic lymph nodes, mesenteric lymph nodes, right pelvic lymph nodes, left pelvic lymph nodes, right inguinal/femoral lymph nodes and left inguinal/femoral lymph nodes. In addition to these core regions, non-Hodgkin lymphoma may involve epitrochlear lymph nodes, popliteal lymph nodes, internal mammary lymph nodes, occipital lymph nodes, submental lymph nodes, preauricular lymph nodes, and many other small nodal areas.

Definition of Extranodal Involvement. Lymphomas presenting in extranodal sites should be staged using the E suffix. For example, lymphoma presenting in the thyroid gland with cervical lymph node involvement should be staged as IE, lymphoma presenting only in cervical lymph nodes as Stage I. Frequently, extranodal lymph node involvement is associated with extranodal extension of disease that may also directly invade other organs. Such extension may be described with an E suffix but should not be recorded as Stage IV. For example, mediastinal lymph nodes with lung extension should be classified as Stage IIE disease. Primary lung lymphoma with hilar and mediastinal lymph node involvement should be classified as Stage IIE.

By convention, any involvement of bone marrow, liver, pleura, or CSF calls for classification as Stage IV disease.

Mycosis fungoides is a primary cutaneous T-cell lymphoma with its own staging system. A TNM classification for mycosis fungoides has been in clinical use and should be maintained (Table 48.3).

ANATOMIC STAGING CRITERIA

Clinical Staging. Lymph node involvement is demonstrated by (a) clinical enlargement of node when alternative pathology may reasonably be ruled out (suspicious nodes should always be biopsied if treatment decisions are based on their involvement) and (b) enlargement on plain radiograph, CT, or lymphangiography. Nodes larger than 1.5 cm are considered abnormal.

Spleen involvement is demonstrated by unequivocal palpable splenomegaly alone, by equivocal palpable splenomegaly with radiologic confirmation (ultrasound or CT), or by either enlargement or multiple focal defects that are neither cystic nor vascular (radiologic enlargement alone is inadequate).

Liver involvement is demonstrated by multiple focal defects that are neither cystic nor vascular. Clinical enlargement alone, with or without abnormalities of liver function tests, is not adequate. Liver biopsy may be used to confirm the presence of liver involvement in a patient with abnormal liver function tests or when imaging assessment is equivocal.

Lung involvement is demonstrated by radiologic evidence of parenchymal involvement in the absence of other likely causes, especially infection. Lung biopsy may be performed to clarify equivocal cases.

Bone involvement is demonstrated using appropriate imaging studies.

CNS involvement is demonstrated by (a) a spinal intradural deposit or spinal cord or meningeal involvement, which may be diagnosed on the basis of the clinical history and findings supported by plain radiology, CSF examination, myelography, CT, and/or MRI (spinal extradural deposits should be carefully assessed, because they may be the result of soft tissue disease that represents extension from bone metastasis or disseminated disease) and (b) intracranial involvement, which will rarely be diagnosed clinically at presentation. It should be considered on the basis of a space-occupying lesion in the face of disease in additional extranodal sites.

Bone marrow involvement is assessed by an aspiration and bone marrow biopsy.

International Prognostic Index (IPI). The International Non-Hodgkin Lymphoma Prognostic Factors Project used pretreatment prognostic factors in a sample of several thousand patients with aggressive lymphomas treated with doxorubicin-based combination chemotherapy to develop a
TABLE 48.3. TNM(B) classification for mycosis fungoides

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Limited patch/plaque</td>
<td>(<10% of skin surface involved)</td>
</tr>
<tr>
<td>T2</td>
<td>Generalized patch/plaque</td>
<td>(≥10% of skin surface involved)</td>
</tr>
<tr>
<td>T3</td>
<td>Cutaneous tumors</td>
<td>(one or more)</td>
</tr>
<tr>
<td>T4</td>
<td>Generalized erythroderma</td>
<td>(with or without patches, plaques, or tumors)</td>
</tr>
<tr>
<td>N0</td>
<td>Lymph nodes clinically uninvolved</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>Lymph nodes clinically enlarged, histologically uninvolved</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>Lymph nodes clinically unenlarged, histologically involved</td>
<td></td>
</tr>
<tr>
<td>N3</td>
<td>Lymph nodes enlarged and histologically involved</td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>No visceral disease</td>
<td></td>
</tr>
<tr>
<td>M1</td>
<td>Visceral disease present</td>
<td></td>
</tr>
<tr>
<td>B0</td>
<td>No circulating atypical cells (<1000 Sezary cells</td>
<td>[CD4 + CD7 +] /ml)</td>
</tr>
<tr>
<td>B1</td>
<td>Circulating atypical cells (≥1000 Sezary cells</td>
<td>[CD4 + CD7 +] /ml)</td>
</tr>
</tbody>
</table>

Stage Classification of Mycosis Fungoides

<table>
<thead>
<tr>
<th>Stage</th>
<th>T1</th>
<th>N0</th>
<th>M0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>T1</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IB</td>
<td>T2</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IIA</td>
<td>T1-2</td>
<td>N1</td>
<td>M0</td>
</tr>
<tr>
<td>IIB</td>
<td>T3</td>
<td>N0-1</td>
<td>M0</td>
</tr>
<tr>
<td>IIIB</td>
<td>T4</td>
<td>N0</td>
<td>M0</td>
</tr>
<tr>
<td>IVA</td>
<td>T1-4</td>
<td>N2-3</td>
<td>M0</td>
</tr>
<tr>
<td>IVB</td>
<td>T1-4</td>
<td>N0-3</td>
<td>M1</td>
</tr>
</tbody>
</table>

predictive model of outcome for aggressive non-Hodgkin lymphoma. On the basis of factors identified in multivariate analysis of the above data set, the International Prognostic Index (Table 48.4) was proposed. Five pretreatment characteristics were found to be independent statistically significant factors: age in years (60 vs. >60); tumor stage I or II (localized) versus III or IV (advanced); number of extranodal sites of involvement (1 vs. >1); patient’s performance status (0 or 1 vs. >2); and serum LDH level (normal vs. abnormal). With the use of these five pretreatment risk factors, patients could be assigned to one of the four risk groups on the basis of the number of presenting risk factors: low (0 or 1), low intermediate (2), high intermediate (3), and high (4 or 5). When patients were analyzed by risk factors, they were found to have very different outcomes with regard to complete response (CR), relapse-free survival (RFS), and overall survival (OS) (Fig. 48.1–48.7). The outcomes indicated that the low-risk patients had an 87% CR rate and an OS rate of 73% at 5 years in contrast to a 44% CR rate and 26% 5-year survival in patients in the high-risk group. A similar pattern of decreasing survival with a number of adverse factors was observed when younger patients only were considered. The IPI was useful in indolent lymphomas, and the validity of the IPI has been confirmed in a population of patients with T-cell lymphomas.

HODGKIN LYMPHOMA

A TNM classification system for Hodgkin lymphoma is not practical. Because Hodgkin lymphoma arises in lymph nodes and usually spreads in a contiguous fashion to the other lymph nodes and ultimately to visceral sites or bone marrow, the concepts of T and N classifications cannot be applied. On the other hand, the Ann Arbor classification system has served oncology well, with only minor modifications, since its introduction in 1971. Two major innovations of the Ann Arbor system were the concept of localized extralymphatic disease (the E designation) and the incorporation of pathologic, as well as clinical, staging into the final stage designation. The E designation remains an important concept, although a precise definition has been elusive. Surgical (laparotomy) staging is now only rarely performed in Hodgkin lymphoma, so the important distinction of clinical versus pathologic staging no longer exists. On the other hand, there is now wide acceptance that the concept of “bulky” disease, especially as it applies to the extent of disease in the mediastinum, is important in staging, because it affects prognosis and treatment selection.

TABLE 48.4. Risk Factors in the International Prognostic Index

<table>
<thead>
<tr>
<th>Factor</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>≥60 years</td>
</tr>
<tr>
<td>Ann Arbor Stage</td>
<td>III or IV</td>
</tr>
<tr>
<td>LDH</td>
<td>Elevated LDH</td>
</tr>
<tr>
<td>Performance status</td>
<td>Reduced performance status (such as ECOG ≥2)</td>
</tr>
</tbody>
</table>

≥ Extranodal sites of disease
Fig 48.1. B-cell chronic lymphocytic leukemia/small lymphocytic lymphoma (B-cell CLL/SLL)

Fig 48.2. Extranodal marginal-zone B-cell lymphoma of mucosa-associated lymphoid tissues (MALT) type (MALT lymphoma)

Fig 48.3. Follicular lymphoma

Fig 48.4. Mantle cell lymphoma

*OAS: Overall Survival
**FFS: Failure Free Survival
Fig 48.5. Diffuse large B-cell lymphoma

Fig 48.6. Peripheral T-cell lymphoma, not otherwise specified

Fig 48.7. Anaplastic large T-cell lymphoma, primary systemic type
STAGING

Staging is based on the result of multiple clinical evaluations, including history, physical examination, blood analysis, imaging studies, the initial biopsy report, and other biopsies as indicated.

The E Lesion. The Ann Arbor system defined E as extralymphatic. Disease in sites such as Waldayer’s ring, the thymus, and the spleen, although extranodal, is not extralymphatic and therefore is not considered to be an E lesion. However, the distinction between certain presentations of extralymphatic disease versus Stage IV disease is not explicit in the Ann Arbor system. For the purpose of this revised AJCC staging system, an E lesion is defined as disease that involves extralymphatic site(s) adjacent to site(s) of lymphatic involvement but in which direct extension is not necessarily demonstrable.

Examples of E lesions include extension into pulmonary parenchyma from adjacent pulmonary hilar or mediastinal lymph nodes; extension into the anterior chest wall and into the pericardium from a large mediastinal mass (two areas of extralymphatic involvement); involvement of the iliopelvic bone in the presense of adjacent iliac lymph node involvement; involvement of a lumbar vertebral body in conjunction with para-aortic lymph node involvement; involvement of the pleura as an extension from adjacent internal mammary nodes; and involvement of the thyroid with adjacent cervical lymph node involvement. A pleural or pericardial effusion with negative (or unknown) cytology is not an E lesion.

Lymph Node Involvement. For the purpose of staging, lymph node involvement includes disease affecting lymph nodes in any of the major lymph node regions. This may be based on physical examination, imaging studies, or biopsy.

A modification of the Ann Arbor system is to include the “infraclavicular” region as a part of the axilla, because anatomic landmarks separating these two regions are difficult to define. Other lymphatic structures include the spleen, appendix, Peyer’s patches, Waldeyer’s ring (the lymphatic tissue of the tonsils, oropharynx, and nasopharynx), and thymus.

Spleen Involvement. Involvement of the spleen is accepted if there is evidence of one or more nodule(s) in the spleen, of any size, on imaging evaluation or if there is histologic involvement documented by biopsy or splenectomy. Splenic enlargement alone (indicated by physical examination or imaging study) is insufficient to support a diagnosis of splenic involvement. Splenic involvement is designated by the letter S.

Hepatic Involvement. Involvement of the liver is accepted if there is evidence of one or more nodule(s) in the liver, of any size, on imaging evaluation or if there is histologic involvement documented by biopsy. Hepatic enlargement alone (indicated by physical examination or imaging study) is insufficient to support a diagnosis of liver involve-

Bone Marrow Involvement. Suspected bone marrow involvement must be documented by biopsy from a clinically/radiographically involved area of bone. Bone marrow involvement is designated by the letter M. Bone marrow involvement is always considered as diffuse extralymphatic disease (Stage IV).

Lung Involvement. Lung involvement (one or more lobes) that represents extension from adjacent mediastinal or hilar lymph nodes is considered extralymphatic extension (E lesion). Pulmonary nodular disease (any number of nodules) is considered as diffuse extralymphatic disease (Stage IV). Lung involvement is designated by the letter L.

Detailed Site Information. Details of specific sites involved are designated by letter subscripts. When the involved sites have been documented by biopsy, a plus (+) sign is added following the letter subscript. If a biopsy has been performed but the tissue/organ is uninvolved, a minus (−) sign is added following the letter subscript. If the tissue/organ is involved clinically but a biopsy has not been performed, neither a plus nor a minus sign is added.

Spleen S
Pulmonary (lung) L
Bone marrow M
Hepatic H
Pericardium Pcard
Pleurap
Waldeyer’s (tonsil, naso-oropharynx) W
Osseous (bone) O
Gastrointestinal GI
Skin D
Soft tissue Softis
Thyroid Thy

Stages. Stage I: Involvement of a single lymph node region (I); or localized involvement of a single extralymphatic organ or site in the absence of any lymph node involvement (IE) (rare in Hodgkin lymphoma).

Stage II: Involvement of two or more lymph node regions on the same side of the diaphragm (II); or localized involvement of a single extralymphatic organ or site in association with regional lymph node involvement with or without involvement of other lymph node regions on the same side of the diaphragm (IIE). The number of regions involved may be indicated by a subscript, as in, for example, II2.

Stage III: Involvement of lymph node regions on both sides of the diaphragm (III), which also may be accompanied by extralymphatic extension in association with adjacent lymph node involvement (IIIE) or by involvement of the spleen (IIIS) or both (IIIES).
Stage IV: Diffuse or disseminated involvement of one or more extralymphatic organs, with or without associated lymph node involvement; or isolated extralymphatic organ involvement in the absence of adjacent regional lymph node involvement, but in conjunction with disease in distant site(s); or any involvement of the liver or bone marrow, or nodular involvement of the lung(s). The location of Stage IV disease is identified further by specifying the site according to the notations listed above.

Bulky Mediastinal Disease. The extent of mediastinal disease is defined by a ratio between the maximum single width of the mediastinal mass on a standing PA chest radiograph and the maximum intrathoracic diameter on the same radiograph. A ratio greater than or equal to 1/3 defines a large (bulky) mediastinal mass. The presence of a large mediastinal mass is designated by the subscript letter X. The presence of bulky disease in locations other than the mediastinum is not identified.

A and B Classification (Symptoms). Each stage should be classified as either A or B according to the absence or presence of defined constitutional symptoms. These are:

1. **Fever.** Unexplained fever with temperature above 38°C.
2. **Night sweats.** Drenching sweats that require change of bedclothes.
3. **Weight loss.** Unexplained weight loss of more than 10% of the usual body weight in the 6 months prior to diagnosis.

Note: Pruritus alone does not qualify for B classification, nor does alcohol intolerance, fatigue, or a short, febrile illness associated with suspected infections.

Examples. Involvement of the mediastinum and bilateral supraclavicular regions only. The mediastinal mass ratio is 0.25. Weight loss is 15 pounds (usual weight 125 pounds). Bone marrow is involved on biopsy. Stage II,B,M.

Involvement of the mediastinum and bilateral supraclavicular regions. The mediastinal mass ratio is 0.4. There is clinical extension of disease into the anterior chest wall and onto the pericardium. There are no constitutional symptoms. Stage II,A,M.

Involvement of the right tonsil and right cervical/supraclavicular nodes only. There are no constitutional symptoms. Stage II,A.

Involvement of the right cervical/supraclavicular nodes, Para-aortic nodes and spleen. Unexplained fevers to 39°C. A bone marrow biopsy demonstrates involvement. Stage IV,B,M.

Involvement of the right supraclavicular, mediastinal (ratio = 0.30), and right hilar lymph nodes with extension into the pulmonary parenchyma of the right lung. No constitutional symptoms are present. A bone marrow biopsy indicates no involvement. Stage IIM,A,M.

Involvement of the right supraclavicular, mediastinal (ratio = 0.30), and right hilar lymph nodes with a pulmonary nodule in the right middle lobe. No constitutional symptoms are present. A bone marrow biopsy indicates no involvement. Stage IIM,A,M.

Involvement of bilateral supraclavicular and mediastinal lymph nodes and spleen. No constitutional symptoms are present (ratio = 0.42). A bone marrow biopsy indicates no involvement. Stage III,M,A,M.

MULTIPLE MYELOMA

Multiple myeloma is a neoplastic disorder characterized by the proliferation of a single clone of plasma cells derived from B-cells. This clone of plasma cells grows in the bone marrow and frequently invades the adjacent bone, producing skeletal destruction that results in bone pain and fractures. Other common clinical findings include anemia, hypercalcemia, and renal insufficiency. Recurrent bacterial infections and bleeding can occur, but the hyperviscosity syndrome is rare. The clone of plasma cells produces monoclonal (M-protein) of IgG or IgM and rarely IgD or IgE or free monoclonal light chains (kappa or lambda) (Bence Jones protein). The diagnosis depends on identification of monoclonal plasma cells in the bone marrow, M-protein in the serum or urine, osteolytic lesions, and a consistent clinical picture with multiple myeloma.

RULES FOR CLASSIFICATION

Diagnosis. Minimal criteria for the diagnosis of multiple myeloma includes a bone marrow containing more than 10% plasma cells or a plasmacytoma plus at least one of the following: (1) an M-protein in the serum (usually > 3 g/dL), (2) an M-protein in the urine, or (3) lytic bone lesions. In addition, the patient must have the usual clinical features of multiple myeloma. Metastatic carcinoma, lymphoma, leukemia, and connective tissue disorders must be excluded in the differential diagnosis. In addition, monoclonal gammapathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) must be excluded. MGUS is characterized by the absence of symptoms, M-protein < 3 g/dL, fewer than 10% plasma cells in the bone marrow, and no lytic lesions, anemia, hypercalcemia, or renal insufficiency. Smoldering multiple myeloma is characterized by an M-protein > 3 g/dL and > 10% plasma cells in the bone marrow. These patients have no lytic lesions, anemia, or hypercalcemia. The plasma cell labeling index is helpful in differentiating MGUS and SMM from multiple myeloma. An elevated plasma cell labeling index (PCLI) is a strong indication of active multiple myeloma. However, 40% of patients with symptomatic multiple myeloma have a normal PCLI. Monoclonal plasma cells of the same isotype can be detected in the peripheral blood of 80% of patients with active multiple myeloma. Circulating plasma cells either are
absent or are present in only small numbers in MGUS and SMM.

Staging. The Durie-Salmon staging system has been utilized for the past 25 years. Stage I requires hemoglobin > 10.0 g/dL, serum calcium ≤ 12 mg/dL, normal bone X-rays or a solitary bone lesion, IgG < 5 g/dL, IgA < 3 g/dL, and urine M-protein < 4 g/24 h. Stage III includes one or more of the following: hemoglobin < 8.5 g/dL, serum calcium > 12 mg/dL, advanced lytic bone lesions, IgG > 7 g/dL, IgA > 5 g/dL, or urine M-protein > 12 g/24 h. Stage II patients fit neither Stage I nor Stage III. Patients are further subclassed as (A) serum creatinine < 2.0 mg/dL and (B) serum creatinine ≥ 2.0 mg/dL. The median survival is approximately 5 years for those with Stage IA disease and is 15 months for those with Stage IIIB disease. This system primarily measures tumor cell burden and has major limitations. Other staging systems have been proposed, but utilization of independent prognostic factors is more useful.

PROGNOSTIC FACTORS

The plasma cell labeling index (PCLI) and beta-2 microglobulin values are the most important prognostic factors. The PCLI is a measurement of the proliferative activity of the plasma cells in myeloma. The monoclonal antibody (BU-1) that reacts with 5-bromo-2-deoxyuridine identifies the cells that synthesize DNA. This antibody does not require denaturation, so fluorescence-conjugated immunoglobulin antisera (kappa and lambda) identify monoclonal plasma cells and plasmacytoid lymphocytes. The high PCLI predicts poor overall and progression-free survival. In multivariate analysis, the PCLI has consistently demonstrated independent prognostic value. Most investigators use a cutoff PCLI value of 1%.

Beta-2 microglobulin correlates with the myeloma tumor burden. A high value predicts poor survival following both conventional chemotherapy and autologous stem cell transplantation. Cytogenetic abnormalities are of major prognostic significance in multiple myeloma. Abnormalities that involve chromosome 11 or 13 and translocations are the most unfavorable prognostic features. Conventional cytogenetics detects abnormalities in only 40% of patients, whereas fluorescence in situ hybridization (FISH) demonstrates abnormalities in approximately 80% of patients. CRP (C-reactive protein) is an acute phase reactant and has been used as a surrogate for measurement for IL-6 levels. IL-6 is a potent growth factor for plasma cells. Soluble interleukin-6 receptor (sIL-6R) is an independent predictor of a poor outcome in multiple myeloma. Lactate dehydrogenase (LDH), when elevated, is an important prognostic factor indicating progressive disease. However, fewer than 10% of patients with multiple myeloma have an elevated LDH level.

Plasmablastic Morphology. The presence of 2% or more plasmablasts in the bone marrow is an unfavorable prognostic factor. In addition, the presence of > 3 × 10⁶ circulating plasma cells in the peripheral blood is associated with a poor prognosis. Bone marrow angiogenesis is increased in multiple myeloma and represents a prognostic factor. The degree of angiogenesis can be determined by using immunohistochemical staining for factor VIII-related antigen to identify microvessels. The overall survival is significantly longer in patients with low-grade angiogenesis compared to those with high-grade angiogenesis. The expression of K-ras gene is associated with a shorter median survival than is observed in patients with N-ras mutations. Other findings that affect survival are age, hemoglobin value, degree of renal insufficiency, plasma cell content of the bone marrow, and level of CD19 + or CD4 + cells in the peripheral blood.

PEDIATRIC LYMPHOID MALIGNANCY

Diagnosis. Children with NHL usually have Burkitt lymphoma, lymphoblastic lymphoma, or diffuse large B-cell lymphoma. The diagnosis of NHL is most readily established by examination of tissue obtained by open biopsy of the involved area. Histologic, immunophenotypic, cytogenetic, and molecular studies are all helpful in confirming the diagnosis. In cases where the patient is too unstable for general anesthesia, as in the case of a child with a large anterior mediastinal mass, a fine-needle aspiration of the mass may be sufficient to establish the diagnosis. Bone marrow and cerebrospinal fluid examination should be performed early in the workup of a child with suspected NHL, because they may be diagnostic and may preclude the need for more invasive procedures.

Workup. The workup of a child with newly diagnosed NHL should include a history and physical examination, a complete blood count, and a chemistry panel. Diagnostic imaging studies should include CT scans of chest, abdomen, and pelvis and a bone scan. A gallium scan may be helpful in evaluating residual masses. MRI of the base of the skull should be considered in children with cranial nerve palsies. Examination of the cerebrospinal fluid and bone marrow (bilateral iliac crest bone marrow aspiration and biopsy) should be performed in all patients.

Upon completion of the foregoing workup, the child is usually assigned a disease stage according to the St. Jude system described by Murphy (Table 48.5), which was designed to accommodate the noncontiguous nature of disease spread, predominant extranodal involvement, and involvement of the central nervous system and bone marrow that characterize the pediatric NHLs. Stages I and II are considered to represent limited stage disease, whereas Stages III and IV are considered advanced stages.
TABLE 48.5. St. Jude Staging System

Stage I
A single tumor (extranodal) or single anatomic area (nodal), with the exclusion of mediastinum or abdomen

Stage II
A single tumor (extranodal) with regional node involvement
Two or more nodal areas on the same side of the diaphragm
Two single (extranodal) tumors with or without regional node involvement on the same side of the diaphragm
A primary gastrointestinal tract tumor, usually in the ileocecal area, with or without involvement of associated mesenteric nodes only*

Stage III
Two single tumors (extranodal) on opposite sides of the diaphragm
Two or more nodal areas above and below the diaphragm
All primary intrathoracic tumors (mediastinal, pleural, thymic)
All extensive primary intra-abdominal disease*
All paraspinal or epidural tumors, regardless of other tumor site(s)

Stage IV
Any of the above with initial CNS and/or bone marrow involvement**

* A distinction is made between apparently localized GI tract lymphoma and more extensive intra-abdominal disease because of their quite different patterns of survival after appropriate therapy. Stage II disease typically is limited to segment of the gut plus or minus the associated mesenteric nodes only, and the primary tumor can be completely removed by segmental excision. Stage III disease typically extends beyond para-aortic and retroperitoneal areas by implants and plaques in mesentry or peritoneum, or by direct infiltration of structures adjacent to the primary tumor. Ascites may be present, and complete resection of all gross tumor is not possible.

** If the marrow involvement is present initially, the number of abnormal cells must be 25% or less in an otherwise normal marrow aspirate with a normal peripheral blood picture.

HISTIOPOIESIS—LYMPHOID NEOPLASMS

9590/3 Malignant lymphoma, NOS
9591/3 Malignant lymphoma, non-Hodgkin, NOS
9596/3 Composite Hodgkin and non-Hodgkin lymphoma
9650/3 Hodgkin lymphoma, NOS
9651/3 Hodgkin lymphoma, lymphocyte-rich
9652/3 Hodgkin lymphoma, mixed cellularity, NOS
9653/3 Hodgkin lymphoma, lymphocyte depletion, NOS
9654/3 Hodgkin lymphoma, lymphocyte depletion, diffuse fibrosis
9655/3 Hodgkin lymphoma, lymphocyte depletion, reticular
9659/3 Hodgkin lymphoma, nodular lymphocyte predominance
9661/3 Hodgkin granuloma
9662/3 Hodgkin sarcoma
9663/3 Hodgkin lymphoma, nodular sclerosis, NOS
9664/3 Hodgkin lymphoma, nodular sclerosis, cellular phase
9665/3 Hodgkin lymphoma, nodular sclerosis, grade 1
9666/3 Hodgkin lymphoma, nodular sclerosis, grade 2
9670/3 Malignant lymphoma, small B lymphocytic, NOS
9671/3 Malignant lymphoma, lymphoplasmacytic
9673/3 Mantle cell lymphoma
9675/3 Malignant lymphoma, mixed small and large cell, diffuse
9678/3 Primary effusion lymphoma
9679/3 Mediastinal large B-cell lymphoma
9680/3 Malignant lymphoma, large B-cell, diffuse, NOS
9684/3 Malignant lymphoma, large B-cell, diffuse, immunoblastic, NOS
9687/3 Burkitt lymphoma, NOS
9689/3 Splenic marginal zone B-cell lymphoma
9690/3 Follicular lymphoma, NOS
9691/3 Follicular lymphoma, grade 2
9695/3 Follicular lymphoma, grade 1
9698/3 Follicular lymphoma, grade 3
9699/3 Marginal zone B-cell lymphoma, NOS
9700/3 Mycosis fungoides
9701/3 Sezary syndrome
9702/3 Mature T-cell lymphoma, NOS
9705/3 Angioimmunoblastic T-cell lymphoma
9708/3 Subcutaneous panniculitis-like T-cell lymphoma
9709/3 Cutaneous T-cell lymphoma, NOS
9714/3 Anaplastic large cell lymphoma, T-cell and Null cell type
9716/3 Hepatosplenic γδ (gamma-delta) cell lymphoma
9717/3 Intestinal T-cell lymphoma
9718/3 Primary cutaneous CD30+ T-cell lymphoproliferative disorder
9719/3 NK/T-cell lymphoma, nasal and nasal-type
9727/3 Precursor cell lymphoblastic lymphoma, NOS
9728/3 Precursor cell lymphoblastic lymphoma, NOS
9728/3 Precursor B-cell lymphoblastic lymphoma
9729/3 Precursor T-cell lymphoblastic lymphoma

BIBLIOGRAPHY

Durie BGM, Salmon SE. A clinical staging system for multiple myeloma: correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer 36:642, 1975
<table>
<thead>
<tr>
<th>Site</th>
<th>Laterality (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Nodal</td>
<td>□ Bilateral</td>
</tr>
<tr>
<td>□ Extranodal</td>
<td>□ Left</td>
</tr>
<tr>
<td>Multiple Nodal Chains</td>
<td>□ Right</td>
</tr>
</tbody>
</table>

Laterality: □ Bilateral □ Left □ Right

Histopathologic Type

- □ Working Formulation
- □ REAL Classification
- □ T-Cell and Putative NK-Cell Neoplasms

Ann Arbor Stage

- □ Stage I: Involvement of a single lymph node region (I), or localized involvement of a single extralymphatic organ or site in the absence of any lymph node involvement (IE) (rare in Hodgkin lymphoma).

- □ Stage II: Involvement of two or more lymph node regions on the same side of the diaphragm (IIE), or localized involvement of a single extralymphatic organ or site in association with regional lymph node involvement with or without involvement of other lymph node regions on the same side of the diaphragm (IIE). The number of regions involved may be indicated by a subscript, for example, II_3.

- □ Stage III: Involvement of lymph node regions on both sides of the diaphragm (III), which also may be accompanied by extralymphatic extension in association with adjacent lymph node involvement (IIIE) or by involvement of the spleen (III_A) or both (III_A_B).

- □ Stage IV: Diffuse or disseminated involvement of one or more extralymphatic organs, with or without associated lymph node involvement; or isolated extralymphatic organ involvement in the absence of adjacent regional lymph node involvement, but in conjunction with disease in distant site(s). Any involvement of the liver or bone marrow, or nodular involvement of the lung(s). The location of Stage IV disease is identified further by designating the specific site.

(continued on reverse side)
Prognostic Factors

<table>
<thead>
<tr>
<th>Ann Arbor Stage</th>
<th>Adverse Risk</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>III or IV</td>
<td>Greater than maximum normal value</td>
<td>1 point</td>
</tr>
<tr>
<td>60 or older</td>
<td></td>
<td>1 point</td>
</tr>
<tr>
<td>More than 1 site of extranodal disease</td>
<td></td>
<td>1 point</td>
</tr>
<tr>
<td>Depressed performance status, ECOG 2 or greater</td>
<td></td>
<td>1 point</td>
</tr>
</tbody>
</table>

IPI Score

- 0–1 point
- 2 points
- 3 points
- 4–5 points

Risk Level

- Low
- Low Intermediate
- High Intermediate
- High

Physician's Signature ___ Date ____________________________
PART XIII
Personnel
and Contributors
Current Members of the Full Committee of the American Joint Committee on Cancer (2001–2002)

<table>
<thead>
<tr>
<th>Name</th>
<th>Title, M.D.</th>
<th>Name</th>
<th>Title, M.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frederick L. Greene</td>
<td>Chair*</td>
<td>H. Irene Hall, Ph.D.</td>
<td></td>
</tr>
<tr>
<td>David L. Page</td>
<td>Vice-Chair*</td>
<td>Daniel G. Haller, M.D.*</td>
<td></td>
</tr>
<tr>
<td>Charles M. Balch</td>
<td></td>
<td>Elizabeth H. Hammond, M.D.</td>
<td></td>
</tr>
<tr>
<td>Michael L. Blute</td>
<td></td>
<td>Nancy C. Jackson, C.T.R.</td>
<td></td>
</tr>
<tr>
<td>Blake Cady</td>
<td></td>
<td>Vencine Kelly, C.T.R.</td>
<td></td>
</tr>
<tr>
<td>William G. Cance</td>
<td></td>
<td>Nancy C. Lee, M.D.</td>
<td></td>
</tr>
<tr>
<td>Carolyn C. Compton, M.D., Ph.D.</td>
<td></td>
<td>Raymond E. Lenhard, Jr., M.D.</td>
<td></td>
</tr>
<tr>
<td>Myles P. Cunningham, M.D.*</td>
<td></td>
<td>John R. Lurain III, M.D.</td>
<td></td>
</tr>
<tr>
<td>Stephen B. Edge</td>
<td></td>
<td>Robert J. Mayer, M.D.</td>
<td></td>
</tr>
<tr>
<td>Irvin D. Fleming</td>
<td></td>
<td>Mack Roach, III, M.D.*</td>
<td></td>
</tr>
<tr>
<td>April G. Fritz, C.T.R., R.H.I.T.</td>
<td></td>
<td>John C. Ruckdeschel, M.D.</td>
<td></td>
</tr>
<tr>
<td>David S. Schrump</td>
<td></td>
<td>Stephen F. Sener, M.D.</td>
<td></td>
</tr>
<tr>
<td>Sudhir Srivastava, Ph.D., M.P.H.*</td>
<td></td>
<td>Joel E. Tepper, M.D.</td>
<td></td>
</tr>
<tr>
<td>James Brantley Thrasher, M.D.</td>
<td></td>
<td>Andrea Trott, III, M.D.</td>
<td></td>
</tr>
<tr>
<td>Donald L. Trump</td>
<td></td>
<td>Thomas K. Weber, M.D.</td>
<td></td>
</tr>
<tr>
<td>Phyllis Wingo, Ph.D.*</td>
<td></td>
<td>W. Douglas Wong, M.D.*</td>
<td></td>
</tr>
</tbody>
</table>

*Current members of the AJCC Executive Committee
Sixth Edition Site Task Forces

BONE

*Michael A. Simon, M.D., Chair
University of Chicago
Chicago, Illinois

Lee J. Helman, M.D.
National Cancer Institute
Bethesda, Maryland

Mark Krailo, Ph.D.
University of Southern California
Arcadia, California

Brian O'Sullivan, M.D.
Princess Margaret Hospital
Toronto, Canada

Shreyaskumar Patel, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Theola K. Rarick, C.T.R.
University of Iowa Hospital & Clinics
Iowa City, Iowa

Andrew Rosenberg, M.D.
Massachusetts General Hospital
Boston, Massachusetts

Murali Sundaram, M.D.
St. Louis University Medical Center
St. Louis, Missouri

BREAST

*Sonja Eva Singletary, M.D., Chair
M. D. Anderson Cancer Center
Houston, Texas

Craig Allred, M.D.
Baylor College of Medicine
Houston, Texas

Pandora Ashley, C.T.R.
Scott and White Memorial Hospital
Temple, Texas

Larry Bassett, M.D.
University of California—Los Angeles
Los Angeles, California

Donald Berry, Ph.D.
M. D. Anderson Cancer Center
Houston, Texas

Kirby I. Bland, M.D.
University of Alabama—Birmingham
Birmingham, Alabama

Patrick I. Borgen, M.D.
Memorial Sloan-Kettering Cancer Center
New York, New York

Gary M. Clark, Ph.D.
Baylor College of Medicine
Houston, Texas

Stephen B. Edge, M.D.
Roswell Park Cancer Institute
Buffalo, New York

Daniel F. Hayes, M.D.
University of Michigan
Ann Arbor, Michigan

Lorie L. Hughes, M.D.
Kemnsestone Hospital
Atlanta, Georgia

Robert V. P. Hutter, M.D.
Livingston, New Jersey

David L. Page, M.D.
Vanderbilt University School of Medicine
Nashville, Tennessee

Abram Recht, M.D.
Beth Israel Deaconess Medical Center
Boston, Massachusetts

Richard L. Theriault, D.O.
M. D. Anderson Cancer Center
Houston, Texas

Ann Thor, M.D.
Northwestern University Evanston Hospital
Evanston, Illinois

Donald L. Weaver, M.D.
Fletcher Allen Health Care
Burlington, Vermont

H. Samuel Wieand, Ph.D.
National Surgical Adjuvant Breast and Bowel Project
Pittsburgh, Pennsylvania

CENTRAL NERVOUS SYSTEM

*Edward R. Laws, Jr., M.D., Chair
University of Virginia Health Sciences Center
Charlottesville, Virginia

Howard Fine, M.D.
National Cancer Institute
Bethesda, Maryland

Minesh Mehta, M.D.
University of Wisconsin Hospital
Madison, Wisconsin
Angel Morris, R.N., B.S.N.
University of Virginia Health Sciences Center
Charlottesville, Virginia

Bernd Scheithauer, M.D.
Mayo Clinic
Rochester, Minnesota

Charles Scott, Ph.D.
American College of Radiology
Philadelphia, Pennsylvania

Linda R. Taylor, C.T.R.
University of New Mexico Health Sciences Center
Albuquerque, New Mexico

COLORECTAL

J. Milburn Jessup, M.D., Chair
Georgetown University School of Medicine
Washington, D.C.

Leonard Gunderson, M.D., Vice-Chair
Mayo Clinic
Rochester, Minnesota

Jaffer Ajani, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Robert W. Beart, Jr., M.D.
University of Southern California
Los Angeles, California

Jacqueline Benedetti, Ph.D.
Southwest Oncology Group
Seattle, Washington

Al B. Benson III, M.D.
Northwestern University Medical Center
Chicago, Illinois

Alfred M. Cohen, M.D.
Lucille P. Markey Cancer Center
Lexington, Kentucky

Carolyn C. Compton, M.D., Ph.D.
McGill University
Montréal, Canada

Richard Goldberg, M.D.
Mayo Clinic
Rochester, Minnesota

Frederick L. Greene, M.D.
Carolinas Medical Center
Charlotte, North Carolina

Daniel G. Haller, M.D.
University of Pennsylvania Health System
Philadelphia, Pennsylvania

Stanley R. Hamilton, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Vencine Kelly, C.T.R.
Stony Brook University Hospital
Stony Brook, New York

Bruce D. Minsky, M.D.
Memorial Sloan-Kettering Cancer Center
New York, New York

Heidi Nelson, M.D.
Mayo Clinic
Rochester, Minnesota

Stephen Rubeis, M.D.
University of Pennsylvania
Philadelphia, Pennsylvania

Leslie H. Sobin, M.D.
Armed Forces Institute of Pathology
Washington, D.C.

Mark Lane Welton, M.D.
University of California—San Francisco
San Francisco, California

DIGESTIVE

*Douglas B. Evans, M.D., Chair
M. D. Anderson Cancer Center
Houston, Texas

Paul Catalano, S.C.D.
Dana Farber Cancer Institute
Boston, Massachusetts

Chuslip Charnsangavej, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Carlos Fernandez-del Castillo, M.D.
Massachusetts General Hospital
Boston, Massachusetts

Yuman Fong, M.D.
Memorial Sloan-Kettering Cancer Center
New York, New York

Gregory Y. Lauwers, M.D.
Massachusetts General Hospital
Boston, Massachusetts

John MacDonald, M.D.
St. Vincent’s Medical Center
New York, New York

Eileen M. O’Reilly, M.D.
Memorial Sloan-Kettering Cancer Center
New York, New York

Susan E. Pater, C.T.R., R.H.I.T.
Children’s Hospital Medical Center
Cincinnati, Ohio

Tyvin Rich, M.D.
University of Virginia Health Sciences Center
Charlottesville, Virginia

J. Nicholas Vauthey, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Mary Kay Washington, M.D.
Vanderbilt University Medical Center
Nashville, Tennessee

Christopher G. Willett, M.D.
Massachusetts General Hospital
Boston, Massachusetts

Christian Wittekind, M.D.
Institut für Pathologie der Universität
Leipzig, Germany

Charles J. Yeo, M.D.
Johns Hopkins Hospital
Baltimore, Maryland

GENITOURINARY

*Ian M. Thompson, Jr., M.D., Chair
University of Texas Health Science Center
San Antonio, Texas

Gerald L. Andriole, M.D.
Washington University School of Medicine
St. Louis, Missouri

Brent Blumenstein, Ph.D.
American College of Surgeons Oncology Group
Duke University School of Medicine
Durham, North Carolina
David G. Bostwick, M.D.
Bostwick Laboratories
Richmond, Virginia

Ruth Etzioni, Ph.D.
Fred Hutchinson Cancer Center
Seattle, Washington

Jeffrey Forman, M.D.
Harper Hospital Karmanos Cancer Center
Detroit, Michigan

Mary K. Gospodarowicz, M.D.
Princess Margaret Hospital
Toronto, Canada

Celestia Higano, M.D.
University of Washington Cancer Center
Seattle, Washington

Gary Miller, M.D.
University of Colorado Health Sciences Center
Denver, Colorado

James E. Montie, M.D.
University of Michigan
Ann Arbor, Michigan

Alan W. Partin, M.D.
Johns Hopkins Hospital
Baltimore, Maryland

Derek Raghavan, M.D.
University of Southern California Norris Comprehensive Cancer Center
Los Angeles, California

Mack Roach III, M.D.
University of California—San Francisco
San Francisco, California

Wael Sakr, M.D.
Wayne State University
Detroit, Michigan

Paul F. Schellhammer, M.D.
Eastern Virginia Graduate School of Medicine
Norfolk, Virginia

James Brantley Thrasher, M.D.
University of Kansas Medical Center
Kansas City, Kansas

Dennis Timony, C.T.R.
Mount Sinai Medical Center
New York, New York

Dean Troyer, M.D.
University of Texas Health Science Center—San Antonio
San Antonio, Texas

GYNECOLOGIC

* Howard W. Jones III, M.D., Chair
 Vanderbilt University Medical Center
 Nashville, Tennessee

Hervey E. Averette, M.D.
Sylvester Comprehensive Cancer Center
Miami, Florida

J. L. Benedet, M.D., F.R.C.S.C.
Vancouver General Hospital
Vancouver, Canada

Larry Copeland, M.D.
Ohio State University
Columbus, Ohio

Patricia J. Eifel, M.D.
M. D. Anderson Cancer Center
Houston, Texas

David M. Gershenson, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Perry W. Grigsby, M.D.
Washington University School of Medicine
St. Louis, Missouri

Robert Kurman, M.D.
Johns Hopkins Hospital
Baltimore, Maryland

Helen Lewis, C.T.R.H.
Lee Moffitt Cancer Center
Tampa, Florida

Edward E. Partridge, M.D.
University of Alabama at Birmingham
Birmingham, Alabama

Lynya Talley, Ph.D.
University of Alabama at Birmingham
Birmingham, Alabama

Peyton T. Taylor Jr., M.D.
University of Virginia Health Sciences Center
Charlottesville, Virginia

Charles W. Whitney, M.D.
Christiana Care
Newark, Delaware

HEAD AND NECK

*Jatin P. Shah, M.D., Chair
 Memorial Sloan-Kettering Cancer Center
 New York, New York

K. Kian Ang, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Arlene Forastiere, M.D.
Johns Hopkins Oncology Center
Baltimore, Maryland

Adam Garden, M.D.
M. D. Anderson Cancer Center
Houston, Texas

Henry T. Hoffman, M.D.
University of Iowa Hospitals and Clinics
Iowa City, Iowa

J. Jack Lee, Ph.D.
M. D. Anderson Cancer Center
Houston, Texas

William Lydiatt, M.D.
Nebraska Medical Center
Omaha, Nebraska

Jesus E. Medina, M.D.
University of Oklahoma Health Sciences Center
Oklahoma City, Oklahoma

Suresh Mukherji, M.D.
University of North Carolina
Chapel Hill, North Carolina

Martha E. Oliva, C.T.R., R.H.T.
Jackson Memorial Hospital
Miami, Florida

Brian O’Sullivan, M.D.
Princess Margaret Hospital
Toronto, Canada

Augusto Paulino, M.D.
University of Michigan
Ann Arbor, Michigan
Bhuvanesh Singh, M.D.
Memorial Sloan-Kettering Cancer Center
New York, New York

Randal Weber, M.D.
University of Pennsylvania Health System
Philadelphia, Pennsylvania

Ernest Weymuller, M.D.
University of Washington
Seattle, Washington

LUNG AND ESOPHAGUS

*Valerie W. Rusch, M.D., Chair
Memorial Sloan-Kettering Cancer Center
New York, New York

Henry D. Appelman, M.D.
University of Michigan
Ann Arbor, Michigan

Roger Byhardt, M.D.
Clement J. Zablocki VA Medical Center
Milwaukee, Wisconsin

Ms. Ellen Edry, C.T.R.
Lowell General Hospital
Lowell, Massachusetts

Laurie Gaspar, M.D.
University of Colorado Health Sciences Center
Denver, Colorado

Robert J. Ginsberg, M.D.
Toronto General Hospital
Toronto, Ontario, Canada

James E. Herndon, II, Ph.D.
Duke University Medical Center
Durham, North Carolina

David H. Johnson, M.D.
Vanderbilt Ingram Cancer Center
Nashville, Tennessee

David P. Kelsen, M.D.
Memorial Sloan-Kettering Cancer Center
New York, New York

William Mackillop, M.D.
Kingston Regional Cancer Center
Kingston, Ontario, Canada

Steven J. Mentzer, M.D.
Brigham and Women's Hospital
Boston, Massachusetts

Mark B. Orringer, M.D.
Taubman Health Care Center
Ann Arbor, Michigan

Edward Patz, M.D.
Duke University Medical Center
Durham, North Carolina

William D. Travis, M.D.
Armed Forces Institute of Pathology
Washington, DC

Andrew Turrisi, M.D.
Medical University of South Carolina
Charleston, South Carolina

Andrew Lister, M.D.
St. Bartholomew's Hospital
London, England

John Sandlund, M.D.
St. Jude Children's Research Hospital
Memphis, Tennessee

Dennis D. Weisenburger, M.D.
University of Nebraska Medical Center
Omaha, Nebraska

John W. Yarbro, M.D.
University of Missouri
Columbia, Missouri

MELANOMA

*Charles M. Balch, M.D., Chair
Johns Hopkins Medical Institutions
Baltimore, Maryland

Michael B. Atkins, M.D.
Beth Israel Deaconess Medical Center
Boston, Massachusetts

Antonio C. Buzaid, M.D., Co-Chair, ad hoc member
Hospital Sirio Libanes Centro De Oncologia
São Paulo, Brazil

Natale Casinelli, M.D., ad hoc member
Istituto Nazionale per lo Studio del Cancro Milan, Italy

Alistair Cochran, M.D., ad hoc member
University of California—Los Angeles
Los Angeles, California

Daniel G. Coit, M.D.
Memorial Sloan-Kettering Cancer Center
New York, New York

Jay S. Cooper, M.D., ad hoc member
New York University Medical Center
New York, New York

Lyn M. Duncan, M.D., ad hoc member
Massachusetts General Hospital
Boston, Massachusetts
OPHTHALMIC

*Barrett Haik, M.D., Chair University of Tennessee at Memphis Memphis, Tennessee

Maj. Darryl J. Ainbinder, M.D. Madigan Army Medical Center Tacoma, Washington

Patricia Jo Downing, C.T.R. Deaconess Hospital Oklahoma City, Oklahoma

Paul T. Finger, M.D. The New York Ophthalmic Oncology Center New York, New York

James C. Fleming, M.D. University of Tennessee Health Science Center Memphis, Tennessee

Hans E. Grossniklaus, M.D. Emory University Atlanta, Georgia

J. William Harbour, M.D. Washington University School of Medicine St. Louis, Missouri

Leonard M. Holbach, M.D. University Erlangen-Nuernberg Erlangen, Germany

Zeynel A. Karcigolu, M.D. Tulane University Medical School New Orleans, Louisiana

A. Linn Murphree, M.D. Children’s Hospital Los Angeles Los Angeles, California

SOFT TISSUE SARCOMA

*Raphael E. Pollock, M.D., Ph.D., Chair M. D. Anderson Cancer Center Houston, Texas

Laurence H. Baker, D.O. University of Michigan Comprehensive Cancer Center Ann Arbor, Michigan

Brent Blumenstein, Ph.D. American College of Surgeons Oncology Group Duke University School of Medicine Durham, North Carolina

Murray F. Brennan, M.D. Memorial Sloan-Kettering Cancer Center New York, New York

Tapas K. Das Gupta, M.D. University of Illinois Chicago, Illinois

Jeffrey S. Kneisl, M.D. Carolinas Medical Center Charlotte, North Carolina

Brian O’Sullivan, M.D. Princess Margaret Hospital Toronto, Canada

David Panicek, M.D. Memorial Sloan-Kettering Cancer Center New York, New York

Peter W. T. Pisters, M.D. M. D. Anderson Cancer Center Houston, Texas

Herman D. Suit, M.D., Ph.D. Massachusetts General Hospital Boston, Massachusetts

Carol S. Venuti, C.R.T., R.H.I.A. Massachusetts General Hospital Boston, Massachusetts

Sharon Weiss, M.D. Emory University Hospital Atlanta, Georgia

STATISTICAL

*Seng-Jaw Soong, Ph.D., Chair University of Alabama at Birmingham Birmingham, Alabama

Jacqueline Benedetti, Ph.D. Southwest Oncology Group Seattle, Washington

Donald Berry, M.D. M. D. Anderson Cancer Center Houston, Texas
Brent Blumenstein, Ph.D.
American College of Surgeons
Oncology Group
Duke University School of Medicine
Durham, North Carolina

Paul Catalano, S.C.D.
Dana Farber Cancer Institute
Boston, Massachusetts

Gary M. Clark, Ph.D.
Baylor College of Medicine
Houston, Texas

William Dupont, Ph.D.
Vanderbilt University Medical Center
Nashville, Tennessee

Ruth Etzioni, Ph.D.
Fred Hutchinson Cancer Center
Seattle, Washington

Benjamin F. Hankey, S.C.D.
SEER Program—National Cancer Institute
Rockville, Maryland

James E. Herndon II, Ph.D.
Duke University Medical Center
Durham, North Carolina

Mark Krailo, Ph.D.
University of Southern California
Arcadia, California

Michael LeBlanc, Ph.D.
Southwest Oncology Group
Seattle, Washington

J. Jack Lee, Ph.D.
M. D. Anderson Cancer Center
Houston, Texas

Charles Scott, Ph.D.
American College of Radiology
Philadelphia, Pennsylvania

Lynya Talley, Ph.D.
University of Alabama at Birmingham
Birmingham, Alabama

H. Samuel Wieand, Ph.D.
National Surgical Adjuvant Breast and Bowel Project
Pittsburgh, Pennsylvania
Index

A
Abdomen, 193. See also specific organs
Abdominal esophagus, 91–93
Acoustic/vestibular nerve, 387
Actinic keratoses, 203
Adamantinoma, 189
Adjusted survival rates, 11–13
Adnexa, 381
Alpha-fetoprotein, 135, 278, 317, 319
Alveolar ridges, 23
American Joint Committee on Cancer (AJCC)
classification, 3
Anastomosis, 23
Anastomosis, 338
Anastomosis, 387
Anaplastic astrocytoma, 387
Anaplastic carcinoma of the thyroid gland, 83
Anaplastic large T-cell lymphoma, 399
Angiosarcoma, 189
Ann Arbor staging system, 395, 397
Anorectal lymph nodes, 126
Anterior mediastinum, 193
Anus, 125
Aortic lymph nodes, 167, 310, 323, 329
Aortopulmonary lymph nodes, 92
Appendix, 113
Armed Forces Institute of Pathology, 4
Articular cartilage, 187
Arrector pili muscles, 33, 47
Arteriosclerosis, 47
Atlas of Tumor Pathology, 4
Autonomic nervous system, 193
Autopsy classification, 6
Axillary lymph nodes, 224, 232

B
Barrett’s esophagus, 94
Basal cell carcinomas, 203–204
B-cell lymphocytic leukemia/small lymphocytic lymphoma (B-cell
CLL/SLL), 398–399
B-cell neoplasms, 394
Beta-2 microglobulin, 402
Bile ducts, extrahepatic, 143–150
Bile ducts, intrahepatic, 131–138
Biliary tract, 145
Bladder, 335
Bladder, urinary, 335–340
Bone, 187–192
Brain, 387–390
Brain stem, 387
Brain stem glioma, 387
Breast
cancer, 223–240
outcomes, 230
SEER data, 10, 12, 13
survival rates, 231–234
Bronchus, main, 167
BU-1 monoclonal antibody, 402
Buccal mucosa, 23
Buccinator lymph nodes, 18
Central nervous system, 387–390
Central neurocytoma, 387
C-erbB-2, 189
Cerebellum, 387
Cerebral meninges, 387
Cerebrum, 387
Cervical esophagus, 91
Cervical lymph nodes, 310, 355, 361, 366, 377, 381
Cervix uteri, 259–265
Cheek, mucosa, 23
Chew wall anatomy, 223
Child-Pugh classes, 132
Chondrosarcoma, 188
Chordoma, 189
Chorionic carcinoma, 293
Chorionic gonadotropin, human (b-hCG), 278, 293, 317
Choroid, 365
Gillary body, 365
Clavicle, 187
Clinical classification, 5
Clitoris, 209, 243
Cloacogenic zone, 125
Cloquet’s node, 303
Coccyx, 187
College of American Pathologists, 4
Colon, 113–122
Common bile duct, 146, 151
Conjunctiva, 355–359, 361–364
Connective tissues, 193
Corpus uteri, 267–273
Cox proportional hazards regression model, 13–14
Cranial nerve, 387
Craniovertebral junction, 387
C-reactive protein (CRP), 402
Cricoid cartilage, 34
Cryptorchidism, 317
Cystic duct, 146

D
Data forms, 8
Deep femoral lymph nodes, 126
Definitions, TNM system, 6–7
Delphian lymph nodes, 18
Descriptors, TNM system, 7–8
Diaphragm, 170
Diaphragmatic lymph nodes, 92
Diffuse large B-cell lymphoma, 399
Duodenal lymph nodes, 108
Duodenum, 107

E
E lesions, 400
Ear, external, 203, 209
Edmondson and Steiner grading system, 133
Endocervix, 259
Endometrium, 267
Endophytic tumors, 25
Ependymoma, 387
Epiglottis, anterior surface, 47
Esophagus, 91–98
Esthesioneuroblastoma, 387
Ethmoid sinuses, 59, 61
Ewing's sarcoma, 189, 193
Excervix, 259
Exocrine pancreas, 157–164
Exophytic tumors, 25
Extrahepatic bile ducts, 145–150
Extremities, 193. See also limbs
Eye, 381
Eyelid, 209, 349–353

F
Face
- carcinoma of the skin, 203
- melanoma of the skin, 209
- sagittal view, 34
- soft-tissue sarcomas, 193
Factor VIII-related antigen, 402
Fallopian tube, 285–290
Fédération Internationale de Gynécologie et d’Obstétrique (FIGO), 243, 251, 259, 267, 276
Femoral lymph nodes, 243, 251, 303
Fibrosarcoma, 189
Fine-needle aspiration biopsy (FNAB), 17–18
Fluorescence in situ hybridization (FISH), 402
Follicular adenocarcinoma of the thyroid gland, 81
Follicular lymphoma, 398
Frontal lobe, 387
Fundus of the stomach, 99
Fundus uteri, 267

G
Gallbladder, 139–144
Ganglioglioma, 387
Gastrectomy, survival rates and, 100
Gastric antrum, 99
Gastric Cancer—see carcinoma, stomach
Gastric lymph nodes, 92
Gastrointestinal lymph nodes, 108
Gastrointestinal stromal tumors (GIST), 109, 193
Gastrointestinal tract, 193
Genitourinary tract, 193
Ger cells tumors, 320
Gerota's lymph nodes, 114, 309, 335
Gestational trophoblastic tumors, 293–298
Gingiva, retromolar, 23
Glans penis, 209, 303
Glioblastoma, 387
Glottis, 47, 48, 52
Growth, tumor, 3
Gums, 23

H
Hard palate, 23
Head and neck sites, 17–22, 193
Heart, 193
Hemangiopericytoma, 189
Hemorrhoidal lymph nodes, 114
Hepatic lymph nodes, 92, 108
Hepatocellular carcinoma, 134
Hepatoduodenal ligament lymph nodes, 132
Hilar lymph nodes, 132, 139, 146, 167
Hip
- carcinoma of the skin, 203
- melanoma of the skin, 209
- soft-tissue sarcomas, 193
Histologic grade (G) definitions, 7
Histopathologic types, 7
Hodgkin lymphoma, 394, 397
Hydatidiform moles, 293
Hypogastric lymph nodes
- anal canal and, 126
- cervix uteri and, 259
- corpus uteri and, 267
- fallopian tubes and, 285
- ovaries and, 275
- penis and, 303
- prostate and, 309
- urethra and, 341
- urinary bladder and, 335
- vagina and, 251
Hypharynx, 35
Hyopharyngeal carcinoma, 35
Hyopharynx, 33–45

I
Ileocolic lymph nodes, 108, 114
Ileum, 107
Ilialic lymph nodes
- anal canal and, 126
- cervix uteri and, 259
- colon and, 114
- corpus uteri and, 267
- fallopian tubes and, 285
- ovaries and, 275
- penis and, 303
- prostate and, 309
- renal pelvis, 329
- ureter, 329
- urethra and, 341
- urinary bladder and, 335
- vagina, 251

Imaging studies, 17
Inferior mesenteric lymph nodes, 114
Inferior pulmonary ligament, 168
Inferior pulmonary ligament lymph nodes, 167
Infrathyroid epiglottis, 47
Infrapyloric lymph nodes, 108
Inguinal lymph nodes
- anal canal and, 126
- fallopian tubes and, 285
- ovaries and, 275
- penis and, 303
- prostate and, 310
- urethra and, 341
- vagina and, 251
- vulva and, 243
Interaortocaval lymph nodes, 317
Interleukin 6 receptor, soluble, 402
Internal mammary lymph nodes, 180
International Classification of Diseases for Oncology (ICD-O), 4, 21
International Histological Classification of Tumours, 4
International Lymphoma Study Group (ILSG), 394
International Mesothelioma Interest Group (IMIG), 179
International Prognostic Index (IPI), 395, 396–397
International Union Against Cancer (UICC), 3
Intrahepatic bile ducts, 131–138
Intraparotid lymph nodes, 18
Intrapulmonary lymph nodes, 167
Intrathoracic esophagus, 91
Intrathoracic lymph nodes, 180
Iris, 365
Ishak's fibrosis scores, 134–135
Isolated tumor cells (ITCs), 227, 230
Isthmus uteri, 267

J
Jejunum, 107
Joints, 187

K
Kaplan-Meier method, 9, 10–11
 Karnofsky scale performance status (PS), 25–26
Kidney, 323–327
K-ras gene, 402

American Joint Committee on Cancer • 2002
Meningioma, 387
Mesenchymoma, 189
Mesenteric lymph nodes, 108
Mesotheliomas, pleural, 179–183
Metastasis. See also specific sites
Middle colic lymph nodes, 114
Mid-jugular lymph nodes, 18
Monoclonal gammopathy of undetermined significance (MGUS), 401
Morphology, nomenclature of, 4
Mouth. See also specific sites
Mucosa-associated lymphoid tissue (MALT), 398
Multidrug resistance gene 1 (MDR1), 189
Multiple myeloma, 401–402
Multiple regression analysis, 13–14
Mycosis fungoides, 397
Myometrium, 267

N
Nasal cavity, 59, 61
Nasopharyngeal carcinoma, 35, 37, 38
Nasopharynx, 33–45
National Cancer Data Base (NCDB), 20–21
National Cancer Institute Surveillance, Epidemiology, and End Results (SEER), 9
Neck
carcinoma of the skin, 203
lymph nodes, 18–19
melanoma of the skin, 209
sagittal view, 34
soft-tissue sarcomas, 193
Nerve sheath tumor, peripheral, 189
Nervous system, 387
Nipple, 223
NK-cell neoplasms, 394
Nomenclature, cancer morphology, 4
Non-Hodgkin lymphoma, 402
Non-small cell lung cancer (NSCLC), 168–170
Nottingham combined histologic grade, 229–234

O
Obturating lymph nodes
cervix uteri and, 259
corpus uteri and, 267
fallopian tubes and, 285
ovaries and, 275
prostate and, 309
urethera and, 341
urinary bladder and, 335
vagina and, 251
Occipital lobe, 387
Olfactory nerve, 387
Oligodendroglioma, 387
Optic glioma, 387
Optic nerve, 387
Oral cavity, 23–31, 33
Orbit, sarcoma of, 381–384
Oropharynx, 33–45
Osteosarcoma, 188, 189
Ovary, 275–282

P
Palate, 23
Pancreatic tumors, 170
Pancreas, exocrine, 157–164
Pancreatic bile ducts, 151
Pancreatic ducts, 157
Pancreatoduodenal lymph nodes, 108
Papillary adenocarcinoma of the thyroid gland, 80
Para-aortic lymph nodes
corpus uteri and, 267
fallopian tubes and, 285
kidneys and, 317
ovaries and, 275
prostate and, 310
Paracardial lymph nodes, 92
Paracaval lymph nodes, 317, 323, 329
Paracervical lymph nodes, 259
Paraesophageal lymph nodes, 92
Parasternal lymph nodes, 259, 267
Paranasal sinuses, 59–67
Parapharyngeal anatomy, 33
Parapharyngeal lymph nodes, 18
Paratracheal lymph nodes, 18, 92, 167
Parietal lobe, 387
Parotid gland, 69–75
Parotid lymph nodes, 355, 381
Pathologic classification, 5–6
Pediatric lymphoid malignancy, 402
Pelvic bones, 187
Pelvic lymph nodes
corpus uteri and, 267
fallopian tubes and, 285
ovaries and, 275
penis and, 303
prostate and, 309
urether and, 329
urethera and, 341
urinary bladder and, 335
vagina and, 251
Pelvis, 193
Penis, 209, 303–308
Periaortic lymph nodes, 317
Peribronchial lymph nodes, 167
Pericardial effusion, 170
Pericholecodochal lymph nodes, 108
Pericolic lymph nodes, 114
Periduodenal lymph nodes, 139, 146
Periesophageal lymph nodes, 167
Peripancreatic lymph nodes, 139, 146, 151
Periparotid lymph nodes, 18
Peripheral nerves, 193
Peripheral T-cell lymphoma, 399
Perirectal lymph nodes, 126
Peritoneum, 193
Perirenal lymph nodes, 329
Perivisceral lymph nodes, 335
PET scan, 114
Peyer's patches, 393
P-glycoprotein, 189
Pharynx, 33-45
Phrenic nerve, 168
Pilocytic astrocytoma, 387
Pineal gland, 387
Pituitary gland, 387
Placenta, 293
Plasma cell labeling index (PCLI), 401, 402
Plasmablasts, 402
Pleurale effusion, 170
Pleural mesothelioma, 179-183
Plura, 179, 193
PNET, 387
Postcrucial region, 33
Posterior cecal lymph nodes, 108, 114
Posterior mediastinum, 193
Posterior triangle lymph nodes, 18
Preauricular lymph nodes, 317
Preauricular lymph nodes, 18, 355, 361, 366, 377
Precarinal lymph nodes, 167
Precordal lymph nodes, 317
Prefix, 7-8
Presternal lymph nodes, 18
Prepuce, 209, 303
Presacral lymph nodes, 259, 267, 285, 335, 341
Pretracheal lymph nodes, 18, 167
Primary tumors (T). See also specific sites
definition of, 6
T classification and survival, 133, 134
Prostate gland, 309-315, 342
Prostate-specific antigen (PSA), 312
Pulmonary ligament lymph nodes, 92
Pyloric lymph nodes, 108
Pylorus, 39
Pyriform sinus, 33

R
Radial margins, 115
Radiation Therapy Oncology Group (RTOG), 312
Rh, 337
Rectosigmoid junction, 113
Rectum, 113-122, 125
Regional lymph nodes (N), 6. See also specific sites
Regression methods, 13-14
Relative survival rates, 13
Renal hilar lymph nodes, 323, 329
Renal pelvis, 329-333
Residual tumor (R), 8
Restaging, 5
Retina, 371
Retinoblastoma, 371-375
Retreatment classification, 6
Retroaortic lymph nodes, 317
Retrocalvral lymph nodes, 317
Retromellar area, 23
Retroperitoneal lymph nodes, 275, 310, 323, 329
Retroperitoneum, 193
Retropharyngeal lymph nodes, 18
Revised European/American Classification of Lymphoid Neoplasms (REAL), 394
Rhabdomyosarcoma, 189
Right colic lymph nodes, 114
Right hepatic duct, 146
Rosenmuller's node, 303

S
Sacral lymph nodes, 259, 275, 309, 335, 341
Sacral promontory lymph nodes, 114
Sacrum, 187
Saliary glands, major, 69-75
Sarcoma bone, 189
orbit, 381-384
soft tissue, 193-199
Satellite nodules, 170
Scalene lymph nodes, 180, 310
Scalf, 203, 309
Scapula, 187
Schwannoma, 387
Scrotum, 203, 309
Sentinel lymph nodes
breast, 225-228, 230-231, 233
melanoma, 210-211, 215
Shoulders
carcinoma of the skin, 203
melanoma of the skin, 209
soft-tissue sarcomas, 193
Sigmoid mesenteric lymph nodes, 114
Skeleton. See bone
Skin
carcinoma of, 203-208
melanoma of, 209-219
Small cell lung cancer (SCLC), 168-170
Small intestine, 107-112
Smoldering multiple myeloma (SMM), 401
Soft palate, 33
Soft tissue sarcomas, 193-199
Spinal cord, 387-390
Spleen, 393
Splenic lymph nodes, 92
Sputum, 170
Squamous cell carcinomas
glios, 52
head and neck (SCCHN), 19
hypopharyngeal, 40
laryngeal, 50
lip, 27
nasopharyngeal, 38
oropharyngeal, 39
skin, 203
subglottis, 53
supraglottis, 51
St. Jude staging system, 402-403
Stage groupings, 6, 8, 134
Staging
general rules of, 4-5
philosophy of, 3
principles of, 3-8
Staging forms, 8
ampulla of Vater, 155-156
anal canal, 129-130
 bile ducts, extrahepatic, 149-150
bone, 191-192
breast, 237-240
cervix uteri, 264-265
colon and rectum, 120-122
congenital, carcinoma of, 358-359
corpus uteri, 271-273
esophagus, 97-98
extrahepatic bile ducts, 149-150
eyelid, carcinoma of, 352-353
fallopian tube, 288-290
gallbladder, 143-144
gallbladder, 326-327
lacral gland carcinoma, 379-380
larynx, 55-57
lip cancers, 30-31
liver, 137-138
lung, 175-177
malignant melanoma of the
congenital, 363-364
melanoma of the skin, 218-219
oral cavity, cancers of, 30-31
orbit, sarcoma of, 383-384
ovary, 280-282
pancreas, exocrine, 163-164
paranasal sinuses, 65-67
penis, 307-308
pharynx, 43-45
pleural mesothelioma, 182-183
prostate cancer, 314-15
renal pelvis, 332-333
retinoblastoma, 374-375
saliary glands, major, 73-75
skin, carcinoma of, 207-208
small intestine, 111-112
soft tissue sarcomas, 198-199
stomach, 104-105
testis, 321-322
tyroid gland, 85-87
trophoblastic tumors, gestational,
296-298
ureter, 332-333
urethra, 344-345
urinary bladder, 339-340
uveal melanoma, 369-370
vagina, 254-256
vulva, 246-248

420

American Joint Committee on Cancer • 2002
AJCC Cancer Staging Manual

The AJCC Cancer Staging Manual and Handbook, prepared by the American Joint Committee on Cancer, are used by physicians and health care professionals throughout the world to facilitate the uniform description of neoplastic diseases. Proper classification and staging allow the physician to determine treatment more appropriately, evaluate results of management more reliably, and compare worldwide statistics reported from various institutions on a local, regional, and national basis more confidently. The fully revised and updated Sixth Edition of the AJCC Cancer Staging Manual brings together all currently available information on staging of cancer at various anatomic sites and incorporates newly acquired knowledge on the etiology and pathology of cancer. As more is learned, cancer staging must adapt to accommodate new information and this revised edition provides an evidence-based staging system based upon the established tenets of TNM classification. All of the TNM staging information included in the Sixth Edition is uniform between the AJCC and the UICC (International Union Against Cancer).

Organized by disease site into 48 comprehensive chapters, the Sixth Edition features much-anticipated, major revisions to the chapters on melanoma and breast cancer. Numerous new line drawings illustrate key anatomic sites throughout the text. Additional user-friendly enhancements include:

- a concise summary of changes in the TNM classification since the previous edition at the start of every chapter
- color-coordinated page tabs for easy access between sections
- a CD-ROM packaged with each manual containing printable copies of the book's 45 Staging Forms for both individual and institutional use
- a comprehensive index

The Sixth Edition of the AJCC Cancer Staging Manual and Handbook remains the essential reference for oncologists, pathologists, surgeons, cancer registrars, and medical professionals worldwide to assure that all those taking care of cancer patients will be trained in the language of cancer staging.