Using Causal Models in Psychomotor Performance Assessment

Alex L. Otto BA, Jason A. Grafft MAc, Iryna Chugaieva MD, Mojca R. Konia MD PhD MACM

University of Minnesota
Medical School
Driven to Discover℠
<table>
<thead>
<tr>
<th>Potential Funding Sources</th>
<th>Check all that apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sim center operational funds</td>
<td>X</td>
</tr>
<tr>
<td>2 Intramural grant</td>
<td></td>
</tr>
<tr>
<td>3 Clinical Departmental funds</td>
<td></td>
</tr>
<tr>
<td>4 Hospital operations</td>
<td></td>
</tr>
<tr>
<td>5 School of Medicine</td>
<td></td>
</tr>
<tr>
<td>6 Hospital QI/PI Process</td>
<td></td>
</tr>
<tr>
<td>7 Philanthropy</td>
<td></td>
</tr>
<tr>
<td>8 Insurance Company</td>
<td></td>
</tr>
<tr>
<td>9 Industry</td>
<td></td>
</tr>
<tr>
<td>10 NIH/AHRQ or other governmental funding source</td>
<td></td>
</tr>
<tr>
<td>11 DoD</td>
<td></td>
</tr>
<tr>
<td>12 Not for Profit or Professional Society</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
Background

• How are psychomotor skills typically evaluated?
• The impact of competency based medical education on administrative workloads\(^1\)
• Procedural expert evaluator scarcity\(^2,3\)
• What are causal models?
Causal Models

- Allow us to draw qualitative assumptions about cause-effect relationships between various experiments and data
- Why are they useful?
 - Analyze the same variables within different groups
 - Draw useful assumptions when we cannot influence populations or data sets

We propose using a causal model in psychomotor performance assessment to
- Identify outliers in our learner group
- Reduce the need for expert faculty involvement

We hypothesized that a clinically novice (C_N) group will show greater variance in the actions taken to deliver a RSII than a clinically proficient (C_P) group
Established an ideal practice sequence to create the model
- Number of ETI attempts, limiting apnea duration, and preO₂ ≥ 3min

- Clinically Proficient (Cₚ) Group
 - Clinical setting, N=45, CRNAs and Anesthesiologists
 - Live recorder timestamping event sequences

- Clinically Novice (C₉) Group
 - Simulation setting, N=15, CA-1 anesthesia residents
 - AV recording for simulation
The Model’s Assumption
- \(\{\mu, \sigma\} : C_N \rightarrow C_P \)

Our causal model allows us to estimate the total effect of \(C_N \) and \(I \) on the probability distribution of \(C_P \)

The fit of \(C_N \) to \(C_P \)

Normalization with increased experience
Results: ETI Attempts

ETI Attempts

Clinically Proficient
Clinical Novice

Clinically Proficient
Prior Posterior
Results: Duration of Apnea

- C_N outperform C_P
- The role of outliers
 - Clinical case difficulty
Results: Preoxygenation Duration

Preoxygenation Duration by Groups

Θ = 0.40

Clinical Novice

Θ = 0.64

Clinically Proficient
Conclusions: ETI Attempts

<table>
<thead>
<tr>
<th></th>
<th>Prior</th>
<th>Posterior</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>1.04</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>0.20</td>
<td>0.48</td>
<td>0.28</td>
</tr>
</tbody>
</table>

- Model’s normalizing effect on small sample data
- SD change and the role of changing providers
 - Range of attempts and attempts per provider
- ETI prep and setup differences
Conclusions: Duration of Apnea

<table>
<thead>
<tr>
<th></th>
<th>Prior</th>
<th>Posterior</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ</td>
<td>167.56</td>
<td>110.00</td>
<td>57.56</td>
</tr>
<tr>
<td>σ</td>
<td>99.71</td>
<td>110.00</td>
<td>10.29</td>
</tr>
</tbody>
</table>

- The C_N group outperformed the C_p in terms of mean apnea time experienced by their patients.

- The role of large SD
 - Simulated patient had no complications
 - Fitting known low difficulty populations to mixed difficulty
Conclusions: Preoxygenation Duration

<table>
<thead>
<tr>
<th>Prior</th>
<th>Posterior</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>0.64</td>
<td>0.62</td>
</tr>
</tbody>
</table>

- C_P appears to outperform C_N reasonably well prior to modeling
 - Model does not show contribution of data structure

- The C_N group is at least able to approximate the performance of C_P in this area without much additional effort
 - Model improvement is needed
Limitations

• Very little data and single institution
 - Outliers and class imbalance

• Lack of simulation patient diversity
 - Specifically for the number of ETI attempts and apnea duration

• Preoxygenation ≥ 3min, interpreted as hit/miss
 - Unexplored points and C_N/C_P curve relation
Summary

• Reduced faculty investment

• Residents scheduled their simulation time

• Audiovisual recordings allowed offsite review

• Availability of quick reference logs
References

• Aylward M, Nixon J, Gladding S. An Entrustable Professional Activity (EPA) for Handoffs as a Model for EPA Assessment Development. Acad Med. 2014 Oct;89(10):1335-40
Thank you for listening!

Questions and Suggestions?